IsGarrido's picture
Upload version gender_classifier_multi_xlmroberta_base
a1b75d3 verified
metadata
library_name: transformers
tags:
  - text-classification
  - modernbert
  - generated-data
base_model: xlm-roberta-base
metrics:
  - name: loss
    type: loss
    value: 0.3350488543510437
  - name: accuracy
    type: accuracy
    value: 0.9124166666666667
  - name: f1
    type: f1
    value: 0.9120147312529937
  - name: precision
    type: precision
    value: 0.9128995023586967
  - name: recall
    type: recall
    value: 0.9124720693071042
  - name: runtime
    type: runtime
    value: 6.9012
  - name: samples_per_second
    type: samples_per_second
    value: 1738.831
  - name: steps_per_second
    type: steps_per_second
    value: 54.338
  - name: epoch
    type: epoch
    value: 3

Gender Classifier (Fine-tuned xlm-roberta-base)

This model was fine-tuned to classify text into: male, female, neutral

Performance Metrics

Metric Value
loss 0.3350
accuracy 0.9124
f1 0.9120
precision 0.9129
recall 0.9125
runtime 6.9012
samples_per_second 1738.8310
steps_per_second 54.3380
epoch 3.0000

Hyperparameters

  • Batch Size: 32
  • Learning Rate: 5e-05
  • Epochs: 3
  • Weight Decay: 0.01
  • Mixed Precision (FP16): True

Quick Usage

from transformers import pipeline

# Load the model directly from this folder or HF Hub
classifier = pipeline('text-classification', model='.')
print(classifier('She is a great engineer.'))