BengaliModel / README.md
Redve's picture
End of training
f3e7bd4
metadata
language:
  - bn
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small bn - Group 4
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: default
          split: test
          args: 'config: bn, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 42.212627219456316

Whisper Small bn - Group 4

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2751
  • Wer: 42.2126

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.163 1.06 500 0.2064 55.6065
0.0862 2.12 1000 0.1675 47.1869
0.0475 3.18 1500 0.1696 44.8561
0.0239 4.24 2000 0.1848 43.2436
0.0119 5.3 2500 0.2081 43.5608
0.0058 6.36 3000 0.2262 43.0718
0.0024 7.42 3500 0.2427 42.4726
0.0009 8.47 4000 0.2611 42.6356
0.0005 9.53 4500 0.2709 42.3492
0.0004 10.59 5000 0.2751 42.2126

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0