File size: 6,688 Bytes
37cc65d c597171 7f81f4c c597171 7f81f4c 33da844 7f81f4c 33da844 7f81f4c 33da844 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
---
base_model: numind/NuExtract-2.0-4B
library_name: transformers
model_name: invoices-donut-finetuned-Lora-merged
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
### Overview
`invoices-donut-merged` is the **LoRA adapter merged back into the base weights** of [`numind/NuExtract-2.0-4B`](https://huggingface.co/numind/NuExtract-2.0-4B).
It behaves like a fully fine-tuned model but trained using efficient LoRA adapters.
This makes it **production-ready**: no need to separately load base + adapters.
---
## Intended Use
- Extracting structured JSON fields from invoice images:
- Invoice number, date
- Seller/client details
- Tax IDs, IBAN
- Item descriptions, prices, VAT
- Totals (net, VAT, gross)
- Not intended for general document OCR outside invoices.
## Training Details
- **Base model**: Qwen/Qwen2.5-VL-3B-Instruct
- **Framework**: Hugging Face TRL (SFTTrainer) with PEFT/LoRA
- **LoRA config**:
- ***Rank (r)***: 8
- ***Alpha***: 32
- ***Target modules***: q_proj, v_proj
- ***Dropout***: 0.1
- **Epochs**: 10
- **Batch size**: 2
- **Learning rate**: 1e-5
- **Precision**: bfloat16
- **Gradient accumulation**: 4
- **Scheduler**: Constant LR
- **Max sequence length**: 1024
- **Gradient checkpointing**: Enabled
- **Trainable parameters**: ~1.8M (0.05% of 3.75B total)
## Usage
### Installation
```bash
pip install transformers torch datasets pillow
```
### Load Model and Processor
```python
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq
model_name = "aliRafik/invoices-donut-finetuned-Lora-merged"
model = AutoModelForVision2Seq.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16, # Optional: Use float32 if bfloat16 causes issues
attn_implementation="flash_attention_2", # Requires Ampere+ GPU & torch >= 2.0
device_map="auto"
)
processor = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True,
padding_side='left',
use_fast=True
)
```
### Define Extraction Template
```python
template = """
{
"header": {
"invoice_no": "string",
"invoice_date": "date-time",
"seller": "string",
"client": "string",
"seller_tax_id": "string",
"client_tax_id": "string",
"iban": "string"
},
"items": [
{
"item_desc": "string",
"item_qty": "number",
"item_net_price": "number",
"item_net_worth": "number",
"item_vat": "number",
"item_gross_worth": "number"
}
],
"summary": {
"total_net_worth": "number",
"total_vat": "number",
"total_gross_worth": "number"
}
}
"""
```
### Test on Sample from Dataset
```python
from datasets import load_dataset
import json
from qwen_vl_utils import process_vision_info
# Load the dataset
dataset = load_dataset("katanaml-org/invoices-donut-data-v1")
# Select a sample (e.g., index 0)
sample = dataset['train'][0]
image = sample['image']
ground_truth = sample['ground_truth']
print(json.loads(ground_truth))
# Prepare message
messages = [
{"role": "user", "content": [{"type": "image", "image": image}]}
]
# Process vision info
image_inputs, _ = process_vision_info(messages)
# Apply chat template
text = processor.tokenizer.apply_chat_template(
messages,
template=template,
tokenize=False,
add_generation_prompt=True
)
# Prepare inputs
inputs = processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt"
).to(model.device)
# Generation config
generation_config = {
"do_sample": False,
"num_beams": 1,
"max_new_tokens": 2048
}
# Generate
generated_ids = model.generate(**inputs, **generation_config)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
# Parse and print
try:
extracted_data = json.loads(output_text[0])
print("Extracted Data:", extracted_data)
except json.JSONDecodeError:
print("Raw Output:", output_text[0])
# Compare with ground truth
gt_parsed = json.loads(ground_truth)['gt_parse']
print("Ground Truth:", gt_parsed)
```
### Test on Unseen Data (Custom Image)
```python
from PIL import Image
from io import BytesIO
import requests
# Load from local path
image_path = "/content/image.jpg" # Replace with your path
image = Image.open(image_path)
# Or load from URL
# image_url = "https://example.com/your_invoice.jpg"
# response = requests.get(image_url)
# image = Image.open(BytesIO(response.content))
# Use same inference code as above
```
## Example Results
#### Input Image:

#### Extracted Data:
```python
{
"header": {
"invoice_no": "49565075",
"invoice_date": "2019-10-28",
"seller": "Kane-Morgan 968 Carr Mission Apt. 320 Bernardville, VA 28211",
"client": "Garcia Inc 445 Haas Viaduct Suite 454 Michaelhaven, LA 32852",
"seller_tax_id": "964-95-3813",
"client_tax_id": "909-75-5482",
"iban": "GB73WCJ55232646970614"
},
"items": [
{
"item_desc": "Anthropologie Gold Elegant Swan Decorative Metal Bottle Stopper Wine Saver",
"item_qty": 3.0,
"item_net_price": 19.98,
"item_net_worth": 59.94,
"item_vat": 10.0,
"item_gross_worth": 65.93
},
{
"item_desc": "Lolita Happy Retirement Wine Glass 15 Ounce GLS11-5534H",
"item_qty": 1.0,
"item_net_price": 8.0,
"item_net_worth": 8.0,
"item_vat": 10.0,
"item_gross_worth": 8.8
},
{
"item_desc": "Lolita \"Congratulations\" Hand Painted and Decorated Wine Glass NIB",
"item_qty": 1.0,
"item_net_price": 20.0,
"item_net_worth": 20.0,
"item_vat": 10.0,
"item_gross_worth": 22.0
}
],
"summary": {
"total_net_worth": 87.94,
"total_vat": 8.79,
"total_gross_worth": 96.73
}
}
```
## License
#### Apache-2.0
tags:
###### vision
###### document-understanding
###### invoice-processing
###### donut
###### qwen
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |