Datasets:
License:
metadata
license: mit
language:
- zh
- en
- de
- fr
task_categories:
- feature-extraction
- text-classification
tags:
- embeddings
- sociology
- retrieval
- sentence-transformers
- numpy
- qwen3
pretty_name: THETA Embeddings
THETA-embeddings
Pre-computed embeddings generated by THETA, a domain-specific embedding model fine-tuned on Qwen3-Embedding for sociology and social science texts.
Description
This dataset contains dense vector embeddings produced under three settings:
- zero_shot: Embeddings from the base Qwen3-Embedding model without fine-tuning
- supervised: Embeddings from the LoRA-adapted model trained with label-guided contrastive learning
- unsupervised: Embeddings from the LoRA-adapted model trained with SimCSE
Repository Structure
CodeSoulco/THETA-embeddings/
├── 0.6B/
│ ├── zero_shot/
│ ├── supervised/
│ └── unsupervised/
└── 4B/
├── zero_shot/
├── supervised/
└── unsupervised/
Embedding Details
| Model | Dimension | Format |
|---|---|---|
| Qwen3-Embedding-0.6B | 896 | .npy |
| Qwen3-Embedding-4B | 2560 | .npy |
Source Datasets: germanCoal, FCPB, socialTwitter, hatespeech, mental_health
How to Use
import numpy as np
# Load pre-computed embeddings
embeddings = np.load("0.6B/zero_shot/germanCoal_zero_shot_embeddings.npy")
print(embeddings.shape) # (num_samples, 896)
Or download via huggingface_hub:
from huggingface_hub import hf_hub_download
import numpy as np
path = hf_hub_download(
repo_id="CodeSoulco/THETA-embeddings",
filename="0.6B/supervised/socialTwitter_supervised_embeddings.npy",
repo_type="dataset"
)
embeddings = np.load(path)
Related
- Model (LoRA weights): CodeSoulco/THETA
License
This dataset is released under the MIT License.
Citation
@misc{theta2026,
title={THETA: Textual Hybrid Embedding--based Topic Analysis},
author={CodeSoul},
year={2026},
publisher={Hugging Face},
url={https://huggingface.co/CodeSoulco/THETA}
}