|
|
--- |
|
|
license: mit |
|
|
task_categories: |
|
|
- image-classification |
|
|
- visual-question-answering |
|
|
- image-to-text |
|
|
tags: |
|
|
- 3d-printing |
|
|
- manufacturing |
|
|
- quality-control |
|
|
- vision-language |
|
|
size_categories: |
|
|
- 1K<n<10K |
|
|
pretty_name: TL-Caxton - 3D Printing Quality Assessment Dataset |
|
|
--- |
|
|
|
|
|
# 3D Printing Nozzle Images Dataset |
|
|
|
|
|
### Dataset Summary |
|
|
|
|
|
- **Task**: Vision-based flow rate estimation and extrusion quality assessment |
|
|
- **Domain**: Additive Manufacturing / 3D Printing |
|
|
- **Data Type**: RGB images with numerical annotations |
|
|
- **Total Samples**: 4,048 images |
|
|
- Training: 3,407 samples |
|
|
- Validation: 331 samples |
|
|
- Test: 310 samples |
|
|
|
|
|
### Supported Tasks |
|
|
|
|
|
1. **Flow Rate Regression**: Predict the flow rate percentage from camera images of the printing process |
|
|
2. **Extrusion Quality Classification**: Classify prints as under-extruded (<90%), good extrusion (90-110%), or over-extruded (>110%) |
|
|
3. **Vision-Language Modeling**: Generate natural language descriptions of print quality from images |
|
|
4. **Visual Question Answering**: Answer questions about print parameters and quality from images |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Fields |
|
|
|
|
|
Each sample contains: |
|
|
|
|
|
- **`img_path`** (string): Filename of the camera image |
|
|
- **`flow_rate`** (float): Flow rate percentage value (ranging from ~39% to ~265%) |
|
|
- **`nozzle_tip_x`** (int): X-coordinate of nozzle tip position in pixels |
|
|
- **`nozzle_tip_y`** (int): Y-coordinate of nozzle tip position in pixels |
|
|
|
|
|
### Data Splits |
|
|
|
|
|
| Split | Samples | Percentage | |
|
|
|-------|---------|------------| |
|
|
| Train | 3,407 | 84.2% | |
|
|
| Validation | 331 | 8.2% | |
|
|
| Test | 310 | 7.6% | |
|
|
| **Total** | **4,048** | **100%** | |
|
|
|
|
|
### Qualitative Descriptions |
|
|
|
|
|
The dataset includes JSON template files for generating natural language descriptions: |
|
|
|
|
|
- **`general_statements.json`**: General observations about the 3D printing nozzle and process |
|
|
- **`qual_good_extrusion.json`**: Descriptions of good extrusion quality (flow rate 90-110%) |
|
|
- **`qual_under_extrusion.json`**: Descriptions of under-extrusion issues (flow rate < 90%) |
|
|
- **`qual_over_extrusion.json`**: Descriptions of over-extrusion issues (flow rate > 110%) |
|
|
- **`quant_templates.json`**: Templates for stating quantitative flow rate values |
|
|
|
|
|
These templates enable synthetic generation of diverse natural language annotations for vision-language training. |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Loading the Dataset |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load the full dataset |
|
|
dataset = load_dataset("cemag/tl-caxton") |
|
|
|
|
|
# Access individual splits |
|
|
train_data = dataset['train'] |
|
|
val_data = dataset['validation'] |
|
|
test_data = dataset['test'] |
|
|
|
|
|
# Example: Access a sample |
|
|
sample = train_data[0] |
|
|
print(f"Flow rate: {sample['flow_rate']}%") |
|
|
print(f"Nozzle position: ({sample['nozzle_tip_x']}, {sample['nozzle_tip_y']})") |
|
|
``` |
|
|
|
|
|
### Using with PyTorch |
|
|
|
|
|
```python |
|
|
from torch.utils.data import DataLoader |
|
|
from PIL import Image |
|
|
import os |
|
|
|
|
|
class CIPHERDataset: |
|
|
def __init__(self, dataset, image_dir, transform=None): |
|
|
self.dataset = dataset |
|
|
self.image_dir = image_dir |
|
|
self.transform = transform |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.dataset) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
sample = self.dataset[idx] |
|
|
img_path = os.path.join(self.image_dir, sample['img_path']) |
|
|
image = Image.open(img_path).convert('RGB') |
|
|
|
|
|
if self.transform: |
|
|
image = self.transform(image) |
|
|
|
|
|
return { |
|
|
'image': image, |
|
|
'flow_rate': sample['flow_rate'], |
|
|
'nozzle_tip': (sample['nozzle_tip_x'], sample['nozzle_tip_y']) |
|
|
} |
|
|
|
|
|
# Create dataset and dataloader |
|
|
train_dataset = CIPHERDataset(train_data, 'images/', transform=your_transform) |
|
|
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) |
|
|
``` |
|
|
|
|
|
### Vision-Language Training |
|
|
|
|
|
```python |
|
|
from data_utils import synthesize_answer, format_data |
|
|
|
|
|
# Generate a natural language description for a sample |
|
|
sample = train_data[0] |
|
|
description = synthesize_answer(sample, general=True, quant=True, qual=True) |
|
|
print(description) |
|
|
|
|
|
# Example output: |
|
|
# "This is the nozzle of a 3D printer. The observed flow rate is approximately |
|
|
# 100%. Good extrusion occurs when a 3D printer delivers the exact amount of |
|
|
# filament needed, resulting in strong, accurate, and visually appealing prints." |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@dataset{tl_caxton, |
|
|
title={tl-Caxton: 3D Printing Quality Assessment Dataset}, |
|
|
author={cemag}, |
|
|
year={2025}, |
|
|
publisher={Hugging Face}, |
|
|
howpublished={\url{https://huggingface.co/datasets/cemag/tl-caxton}} |
|
|
} |
|
|
``` |
|
|
|
|
|
```bibtex |
|
|
@article{MargadjiPattinson2025HybridReasoning, |
|
|
title = {Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing}, |
|
|
author = {Margadji, Christos and Pattinson, Sebastian W.}, |
|
|
year = {2025}, |
|
|
note = {arXiv:2506.08462}, |
|
|
url = {https://arxiv.org/abs/2506.08462} |
|
|
} |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
This dataset is released under the MIT License. |
|
|
|
|
|
## Contact |
|
|
|
|
|
For questions or issues regarding this dataset, please open an issue on the dataset repository or email at cm2161@cam.ac.uk |