mbib-base / README.md
horychtom's picture
Update README.md
849612e
|
raw
history blame
5.89 kB
metadata
license: cc-by-sa-4.0
task_categories:
  - text-classification
language:
  - en
pretty_name: Media Bias Identification Benchmark
configs:
  - cognitive-bias
  - fake-news
  - gender-bias
  - hate-speech
  - linguistic-bias
  - political-bias
  - racial-bias
  - text-level-bias

Dataset Card for Media-Bias-Identification-Benchmark

Table of Contents

Dataset Description

Dataset Summary

TODO

Tasks and Information

DatasetSourceSub-domainTask TypeClasses
ECtHR (Task A) Chalkidis et al. (2019) ECHRMulti-label classification10+1
ECtHR (Task B) Chalkidis et al. (2021a) ECHRMulti-label classification 10+1
SCOTUS Spaeth et al. (2020)US LawMulti-class classification14
EUR-LEX Chalkidis et al. (2021b)EU LawMulti-label classification100
LEDGAR Tuggener et al. (2020)ContractsMulti-class classification100
UNFAIR-ToS Lippi et al. (2019)ContractsMulti-label classification8+1
CaseHOLDZheng et al. (2021)US LawMultiple choice QAn/a

Baseline

DatasetECtHR AECtHR BSCOTUSEUR-LEXLEDGARUNFAIR-ToSCaseHOLD
Modelμ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1μ-F1 / m-F1
TFIDF+SVM 64.7 / 51.7 74.6 / 65.1 78.2 / 69.5 71.3 / 51.4 87.2 / 82.4 95.4 / 78.8n/a
Medium-sized Models (L=12, H=768, A=12)
BERT 71.2 / 63.6 79.7 / 73.4 68.3 / 58.3 71.4 / 57.2 87.6 / 81.8 95.6 / 81.3 70.8
RoBERTa 69.2 / 59.0 77.3 / 68.9 71.6 / 62.0 71.9 / 57.9 87.9 / 82.3 95.2 / 79.2 71.4
DeBERTa 70.0 / 60.8 78.8 / 71.0 71.1 / 62.7 72.1 / 57.4 88.2 / 83.1 95.5 / 80.3 72.6
Longformer 69.9 / 64.7 79.4 / 71.7 72.9 / 64.0 71.6 / 57.7 88.2 / 83.0 95.5 / 80.9 71.9
BigBird 70.0 / 62.9 78.8 / 70.9 72.8 / 62.0 71.5 / 56.8 87.8 / 82.6 95.7 / 81.3 70.8
Legal-BERT 70.0 / 64.0 80.4 / 74.7 76.4 / 66.5 72.1 / 57.4 88.2 / 83.0 96.0 / 83.0 75.3
CaseLaw-BERT 69.8 / 62.9 78.8 / 70.3 76.6 / 65.9 70.7 / 56.6 88.3 / 83.0 96.0 / 82.3 75.4
Large-sized Models (L=24, H=1024, A=18)
RoBERTa 73.8 / 67.6 79.8 / 71.6 75.5 / 66.3 67.9 / 50.3 88.6 / 83.6 95.8 / 81.6 74.4

Languages

All datasets are in English

Dataset Structure

Data Instances

cognitive-bias

An example of one training instance looks as follows.

{
  "text": "A defense bill includes language that would require military hospitals to provide abortions on demand",
  "label": 1
}

Data Fields

  • text: a sentence from various sources (eg., news articles, twitter, other social media).
  • label: binary indicator of bias (0 = unbiased, 1 = biased)

Considerations for Using the Data

Social Impact of Dataset

TODO

Discussion of Biases

TODO

Other Known Limitations

TODO

Citation Information

TODO

Contributions

TODO