paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/review-highlights-opinion-mining-on-reviews-a
|
Review highlights: opinion mining on reviews: a hybrid model for rule selection in aspect extraction
| null |
https://dl.acm.org/citation.cfm?id=3158385
|
http://vixra.org/pdf/1910.0514v1.pdf
|
https://github.com/yardstick17/AspectBasedSentimentAnalysis
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/temporally-coherent-gans-for-video-super
|
Learning Temporal Coherence via Self-Supervision for GAN-based Video Generation
|
1811.09393
|
https://arxiv.org/abs/1811.09393v4
|
https://arxiv.org/pdf/1811.09393v4.pdf
|
https://github.com/GitHubXlong/TecoGAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ckmeans-and-fckmeans-two-deterministic
|
CKmeans and FCKmeans : Two deterministic initialization procedures for Kmeans algorithm using a modified crowding distance
|
2304.09989
|
https://arxiv.org/abs/2304.09989v2
|
https://arxiv.org/pdf/2304.09989v2.pdf
|
https://github.com/Layebuniv/fckmeans
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/1-ogc-the-first-open-gravitational-wave
|
1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data
|
1811.01921
|
http://arxiv.org/abs/1811.01921v2
|
http://arxiv.org/pdf/1811.01921v2.pdf
|
https://github.com/gwastro/1-ogc
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/modeling-the-dynamics-of-online-learning
|
Modeling the Dynamics of Online Learning Activity
|
1610.05775
|
http://arxiv.org/abs/1610.05775v1
|
http://arxiv.org/pdf/1610.05775v1.pdf
|
https://github.com/Networks-Learning/hdhp.py
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hierarchical-density-order-embeddings
|
Hierarchical Density Order Embeddings
|
1804.09843
|
http://arxiv.org/abs/1804.09843v1
|
http://arxiv.org/pdf/1804.09843v1.pdf
|
https://github.com/benathi/density-order-emb
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/kernalised-multi-resolution-convnet-for
|
Kernalised Multi-resolution Convnet for Visual Tracking
|
1708.00577
|
http://arxiv.org/abs/1708.00577v1
|
http://arxiv.org/pdf/1708.00577v1.pdf
|
https://github.com/stevenwudi/KMC_cvprw_2017
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/crowdsourcing-lightweight-pyramids-for-manual
|
Crowdsourcing Lightweight Pyramids for Manual Summary Evaluation
|
1904.05929
|
http://arxiv.org/abs/1904.05929v1
|
http://arxiv.org/pdf/1904.05929v1.pdf
|
https://github.com/OriShapira/LitePyramids
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/spatiotemporal-residual-networks-for-video
|
Spatiotemporal Residual Networks for Video Action Recognition
|
1611.02155
|
http://arxiv.org/abs/1611.02155v1
|
http://arxiv.org/pdf/1611.02155v1.pdf
|
https://github.com/feichtenhofer/st-resnet
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generative-partition-networks-for-multi
|
Generative Partition Networks for Multi-Person Pose Estimation
|
1705.07422
|
http://arxiv.org/abs/1705.07422v2
|
http://arxiv.org/pdf/1705.07422v2.pdf
|
https://github.com/NieXC/pytorch-ppn
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/traffic-graph-convolutional-recurrent-neural
|
Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
|
1802.07007
|
https://arxiv.org/abs/1802.07007v3
|
https://arxiv.org/pdf/1802.07007v3.pdf
|
https://github.com/zhiyongc/Seattle-Loop-Data
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/surfacenet-an-end-to-end-3d-neural-network
|
SurfaceNet: An End-to-end 3D Neural Network for Multiview Stereopsis
|
1708.01749
|
http://arxiv.org/abs/1708.01749v1
|
http://arxiv.org/pdf/1708.01749v1.pdf
|
https://github.com/mjiUST/SurfaceNet
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/geometric-adaptive-monte-carlo-in-random
|
Geometric adaptive Monte Carlo in random environment
|
1608.07986
|
https://arxiv.org/abs/1608.07986v4
|
https://arxiv.org/pdf/1608.07986v4.pdf
|
https://github.com/scidom/MAMALASampler.jl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/random-directions-stochastic-approximation
|
Random directions stochastic approximation with deterministic perturbations
|
1808.02871
|
http://arxiv.org/abs/1808.02871v2
|
http://arxiv.org/pdf/1808.02871v2.pdf
|
https://github.com/prashla/RDSA
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/manifoldnet-a-deep-network-framework-for
|
ManifoldNet: A Deep Network Framework for Manifold-valued Data
|
1809.06211
|
http://arxiv.org/abs/1809.06211v3
|
http://arxiv.org/pdf/1809.06211v3.pdf
|
https://github.com/jjbouza/manifold-net
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/show-and-tell-a-neural-image-caption
|
Show and Tell: A Neural Image Caption Generator
|
1411.4555
|
http://arxiv.org/abs/1411.4555v2
|
http://arxiv.org/pdf/1411.4555v2.pdf
|
https://github.com/kirbiyik/caption-it
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/disentangling-factors-of-variation-with-cycle
|
Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders
|
1804.10469
|
http://arxiv.org/abs/1804.10469v1
|
http://arxiv.org/pdf/1804.10469v1.pdf
|
https://github.com/ananyahjha93/disentangling-factors-of-variation-using-adversarial-training
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/disentangling-factors-of-variation-in-deep
|
Disentangling factors of variation in deep representations using adversarial training
|
1611.03383
|
http://arxiv.org/abs/1611.03383v1
|
http://arxiv.org/pdf/1611.03383v1.pdf
|
https://github.com/ananyahjha93/disentangling-factors-of-variation-using-adversarial-training
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/neshitov/UNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/audino-a-modern-annotation-tool-for-audio-and
|
audino: A Modern Annotation Tool for Audio and Speech
|
2006.05236
|
https://arxiv.org/abs/2006.05236v2
|
https://arxiv.org/pdf/2006.05236v2.pdf
|
https://github.com/midas-research/audino
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/robust-adversarial-reinforcement-learning
|
Robust Adversarial Reinforcement Learning
|
1703.02702
|
http://arxiv.org/abs/1703.02702v1
|
http://arxiv.org/pdf/1703.02702v1.pdf
|
https://github.com/davidsonic/robust-grasp
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/chainercv-a-library-for-deep-learning-in
|
ChainerCV: a Library for Deep Learning in Computer Vision
|
1708.08169
|
http://arxiv.org/abs/1708.08169v1
|
http://arxiv.org/pdf/1708.08169v1.pdf
|
https://github.com/chainer/chainercv
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/denoising-diffusion-probabilistic-models
|
Denoising Diffusion Probabilistic Models
|
2006.11239
|
https://arxiv.org/abs/2006.11239v2
|
https://arxiv.org/pdf/2006.11239v2.pdf
|
https://github.com/sak-h/pytorch-Denoising-Diffusion-Probabilistic-Models
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vo-tranh-eternal-pulse-o-lumina-genesis
|
Vô Tranh Eternal Pulse Ω – Lumina Genesis
| null |
https://zenodo.org/records/15132859
|
https://zenodo.org/records/15132859/files/WHITEPAPER.pdf
|
https://github.com/vinhatson/The-Last---Lumina-genesis
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/variational-dropout-sparsifies-deep-neural
|
Variational Dropout Sparsifies Deep Neural Networks
|
1701.05369
|
http://arxiv.org/abs/1701.05369v3
|
http://arxiv.org/pdf/1701.05369v3.pdf
|
https://github.com/ars-ashuha/sparse-vd-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-from-simulated-and-unsupervised
|
Learning from Simulated and Unsupervised Images through Adversarial Training
|
1612.07828
|
http://arxiv.org/abs/1612.07828v2
|
http://arxiv.org/pdf/1612.07828v2.pdf
|
https://github.com/rickyhan/SimGAN-Captcha
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/savoias-a-diverse-multi-category-visual
|
SAVOIAS: A Diverse, Multi-Category Visual Complexity Dataset
|
1810.01771
|
http://arxiv.org/abs/1810.01771v1
|
http://arxiv.org/pdf/1810.01771v1.pdf
|
https://github.com/esaraee/Savoias-Dataset
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/depth-map-prediction-from-a-single-image
|
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
|
1406.2283
|
http://arxiv.org/abs/1406.2283v1
|
http://arxiv.org/pdf/1406.2283v1.pdf
|
https://github.com/MasazI/cnn_depth_tensorflow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/word-embeddings-for-the-analysis-of
|
Word Embeddings for the Analysis of Ideological Placement in Parliamentary Corpora
| null |
https://www.cambridge.org/core/journals/political-analysis/article/abs/word-embeddings-for-the-analysis-of-ideological-placement-in-parliamentary-corpora/017F0CEA9B3DB6E1B94AC36A509A8A7B
|
https://ludovicrheault.weebly.com/uploads/3/9/4/0/39408253/rheaultcochrane2019_pa.pdf
|
https://github.com/lrheault/partyembed
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/how-emotional-are-you-neural-architectures
|
How emotional are you? Neural Architectures for Emotion Intensity Prediction in Microblogs
| null |
https://aclanthology.org/C18-1247
|
https://aclanthology.org/C18-1247.pdf
|
https://github.com/Pranav-Goel/Neural_Emotion_Intensity_Prediction
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/afet-automatic-fine-grained-entity-typing-by
|
AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding
| null |
https://aclanthology.org/D16-1144
|
https://aclanthology.org/D16-1144.pdf
|
https://github.com/shanzhenren/AFET
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-signature-of-large-scale-turbulence
|
The signature of large scale turbulence driving on the structure of the interstellar medium
|
2206.00451
|
https://arxiv.org/abs/2206.00451v1
|
https://arxiv.org/pdf/2206.00451v1.pdf
|
https://bitbucket.org/rteyssie/ramses
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/the-fermilab-muon-g-2-straw-tracking
|
The Fermilab Muon $g-2$ straw tracking detectors, internal tracker alignment, and the muon EDM measurement
|
1909.12900
|
https://arxiv.org/abs/1909.12900v2
|
https://arxiv.org/pdf/1909.12900v2.pdf
|
https://github.com/glukicov/alignTrack
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/two-local-models-for-neural-constituent
|
Two Local Models for Neural Constituent Parsing
|
1808.04850
|
http://arxiv.org/abs/1808.04850v2
|
http://arxiv.org/pdf/1808.04850v2.pdf
|
https://github.com/zeeeyang/two-local-neural-conparsers
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/learning-deep-features-for-discriminative
|
Learning Deep Features for Discriminative Localization
|
1512.04150
|
http://arxiv.org/abs/1512.04150v1
|
http://arxiv.org/pdf/1512.04150v1.pdf
|
https://github.com/tensorpack/tensorpack/tree/master/examples/Saliency
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/a-fast-and-scalable-joint-estimator-for-1
|
A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models
|
1806.00548
|
http://arxiv.org/abs/1806.00548v4
|
http://arxiv.org/pdf/1806.00548v4.pdf
|
https://github.com/QData/JEEK
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/WeiYangze/hibernate-demo
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/neural-machine-translation-of-rare-words-with
|
Neural Machine Translation of Rare Words with Subword Units
|
1508.07909
|
http://arxiv.org/abs/1508.07909v5
|
http://arxiv.org/pdf/1508.07909v5.pdf
|
https://github.com/simonjisu/NMT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/breaking-the-nonsmooth-barrier-a-scalable
|
Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization
|
1707.06468
|
http://arxiv.org/abs/1707.06468v3
|
http://arxiv.org/pdf/1707.06468v3.pdf
|
https://github.com/fabianp/ProxASAGA
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/underground-root-tuber-sensing-via-a-wi-fi
|
Underground Root Tuber Sensing via a Wi-Fi Mesh Network
| null |
https://dl.acm.org/doi/10.1145/3715014.3724365
|
https://dl.acm.org/doi/pdf/10.1145/3715014.3724365
|
https://github.com/Data-driven-RTI/undergroud_sensing_wifi_csi
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/like-what-you-like-knowledge-distill-via
|
Like What You Like: Knowledge Distill via Neuron Selectivity Transfer
|
1707.01219
|
http://arxiv.org/abs/1707.01219v2
|
http://arxiv.org/pdf/1707.01219v2.pdf
|
https://github.com/TuSimple/neuron-selectivity-transfer
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/reassessing-the-goals-of-grammatical-error
|
Reassessing the Goals of Grammatical Error Correction: Fluency Instead of Grammaticality
| null |
https://aclanthology.org/Q16-1013
|
https://aclanthology.org/Q16-1013.pdf
|
https://github.com/keisks/reassess-gec
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ctcmodel-a-keras-model-for-connectionist
|
CTCModel: a Keras Model for Connectionist Temporal Classification
|
1901.07957
|
http://arxiv.org/abs/1901.07957v1
|
http://arxiv.org/pdf/1901.07957v1.pdf
|
https://github.com/cyprienruffino/CTCModel
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/alternating-direction-graph-matching
|
Alternating Direction Graph Matching
|
1611.07583
|
http://arxiv.org/abs/1611.07583v4
|
http://arxiv.org/pdf/1611.07583v4.pdf
|
https://github.com/netw0rkf10w/adgm
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/efficient-neural-architecture-search-via-1
|
Efficient Neural Architecture Search via Parameter Sharing
|
1802.03268
|
http://arxiv.org/abs/1802.03268v2
|
http://arxiv.org/pdf/1802.03268v2.pdf
|
https://github.com/Ezereal/enas
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/forgetting-to-learn-logic-programs
|
Forgetting to learn logic programs
|
1911.06643
|
https://arxiv.org/abs/1911.06643v1
|
https://arxiv.org/pdf/1911.06643v1.pdf
|
https://github.com/metagol/metagol
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/yolo9000-better-faster-stronger
|
YOLO9000: Better, Faster, Stronger
|
1612.08242
|
http://arxiv.org/abs/1612.08242v1
|
http://arxiv.org/pdf/1612.08242v1.pdf
|
https://github.com/gpandu/Object-detection
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
|
Focal Loss for Dense Object Detection
|
1708.02002
|
http://arxiv.org/abs/1708.02002v2
|
http://arxiv.org/pdf/1708.02002v2.pdf
|
https://github.com/neshitov/UNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-adaptation-learning-for
|
Unsupervised Adaptation Learning for Hyperspectral Imagery Super-Resolution
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Zhang_Unsupervised_Adaptation_Learning_for_Hyperspectral_Imagery_Super-Resolution_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_Unsupervised_Adaptation_Learning_for_Hyperspectral_Imagery_Super-Resolution_CVPR_2020_paper.pdf
|
https://github.com/JiangtaoNie/UAL
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/fast-mser
|
Fast MSER
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Xu_Fast_MSER_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Fast_MSER_CVPR_2020_paper.pdf
|
https://github.com/mmmn143/fast-mser
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/aggregated-residual-transformations-for-deep
|
Aggregated Residual Transformations for Deep Neural Networks
|
1611.05431
|
http://arxiv.org/abs/1611.05431v2
|
http://arxiv.org/pdf/1611.05431v2.pdf
|
https://github.com/TuSimple/resnet.mxnet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/backpack-packing-more-into-backprop
|
BackPACK: Packing more into backprop
|
1912.10985
|
https://arxiv.org/abs/1912.10985v2
|
https://arxiv.org/pdf/1912.10985v2.pdf
|
https://github.com/f-dangel/backpack
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/linear-colour-segmentation-revisited
|
Linear colour segmentation revisited
|
1901.00534
|
http://arxiv.org/abs/1901.00534v1
|
http://arxiv.org/pdf/1901.00534v1.pdf
|
https://github.com/visillect/colorsegdataset
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/guided-image-generation-with-conditional
|
Guided Image Generation with Conditional Invertible Neural Networks
|
1907.02392
|
https://arxiv.org/abs/1907.02392v3
|
https://arxiv.org/pdf/1907.02392v3.pdf
|
https://github.com/5yearsKim/Conditional-Normalizing-Flow
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/glow-generative-flow-with-invertible-1x1
|
Glow: Generative Flow with Invertible 1x1 Convolutions
|
1807.03039
|
http://arxiv.org/abs/1807.03039v2
|
http://arxiv.org/pdf/1807.03039v2.pdf
|
https://github.com/5yearsKim/Conditional-Normalizing-Flow
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-simple-essence-of-automatic
|
The simple essence of automatic differentiation
|
1804.00746
|
http://arxiv.org/abs/1804.00746v2
|
http://arxiv.org/pdf/1804.00746v2.pdf
|
https://github.com/conal/essence-of-ad
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/an-ensemble-model-of-word-based-and-character
|
An Ensemble Model of Word-based and Character-based Models for Japanese and Chinese Input Method
| null |
https://aclanthology.org/W12-4802
|
https://aclanthology.org/W12-4802.pdf
|
https://github.com/nokuno/jsc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/meta-transfer-networks-for-zero-shot-learning
|
Episode-based Prototype Generating Network for Zero-Shot Learning
|
1909.03360
|
https://arxiv.org/abs/1909.03360v2
|
https://arxiv.org/pdf/1909.03360v2.pdf
|
https://github.com/yunlongyu/EPGN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/spin-orientations-of-merging-black-holes
|
Spin orientations of merging black holes formed from the evolution of stellar binaries
|
1808.02491
|
http://arxiv.org/abs/1808.02491v1
|
http://arxiv.org/pdf/1808.02491v1.pdf
|
https://github.com/dgerosa/spops
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/constrained-size-tensorflow-models-for
|
Constrained-size Tensorflow Models for YouTube-8M Video Understanding Challenge
|
1808.06739
|
http://arxiv.org/abs/1808.06739v3
|
http://arxiv.org/pdf/1808.06739v3.pdf
|
https://github.com/boliu61/youtube-8m
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/Gaurav927/Neural_Style_Transfer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/easy-transfer-learning-by-exploiting-intra
|
Easy Transfer Learning By Exploiting Intra-domain Structures
|
1904.01376
|
http://arxiv.org/abs/1904.01376v2
|
http://arxiv.org/pdf/1904.01376v2.pdf
|
https://github.com/jindongwang/transferlearning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/convex-space-learning-for-tabular-synthetic
|
Convex space learning for tabular synthetic data generation
|
2407.09789
|
https://arxiv.org/abs/2407.09789v1
|
https://arxiv.org/pdf/2407.09789v1.pdf
|
https://github.com/manjunath-mahendra/NextConvGeN
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/giraffe-using-deep-reinforcement-learning-to
|
Giraffe: Using Deep Reinforcement Learning to Play Chess
|
1509.01549
|
http://arxiv.org/abs/1509.01549v2
|
http://arxiv.org/pdf/1509.01549v2.pdf
|
https://github.com/saikrishna-1996/deep_pepper_chess
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/13013666
|
Zero-Shot Learning Through Cross-Modal Transfer
|
1301.3666
|
http://arxiv.org/abs/1301.3666v2
|
http://arxiv.org/pdf/1301.3666v2.pdf
|
https://github.com/mganjoo/zslearning
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/semantic-image-synthesis-via-adversarial
|
Semantic Image Synthesis via Adversarial Learning
|
1707.06873
|
http://arxiv.org/abs/1707.06873v1
|
http://arxiv.org/pdf/1707.06873v1.pdf
|
https://github.com/vtddggg/BilinearGAN_for_LBIE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/composition-based-crystal-materials-symmetry
|
Composition based crystal materials symmetry prediction using machine learning with enhanced descriptors
|
2105.07303
|
https://arxiv.org/abs/2105.07303v1
|
https://arxiv.org/pdf/2105.07303v1.pdf
|
https://github.com/Yuxinya/SG_predict
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generative-adversarial-text-to-image
|
Generative Adversarial Text to Image Synthesis
|
1605.05396
|
http://arxiv.org/abs/1605.05396v2
|
http://arxiv.org/pdf/1605.05396v2.pdf
|
https://github.com/vtddggg/BilinearGAN_for_LBIE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mixup-beyond-empirical-risk-minimization
|
mixup: Beyond Empirical Risk Minimization
|
1710.09412
|
http://arxiv.org/abs/1710.09412v2
|
http://arxiv.org/pdf/1710.09412v2.pdf
|
https://github.com/simongrest/kaggle-freesound-audio-tagging-2019
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/metasci-scalable-and-adaptive-reconstruction
|
MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing
|
2103.01786
|
https://arxiv.org/abs/2103.01786v1
|
https://arxiv.org/pdf/2103.01786v1.pdf
|
https://github.com/xyvirtualgroup/MetaSCI-CVPR2021
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/squeeze-and-excitation-networks
|
Squeeze-and-Excitation Networks
|
1709.01507
|
https://arxiv.org/abs/1709.01507v4
|
https://arxiv.org/pdf/1709.01507v4.pdf
|
https://github.com/simongrest/kaggle-freesound-audio-tagging-2019
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/open3d-a-modern-library-for-3d-data
|
Open3D: A Modern Library for 3D Data Processing
|
1801.09847
|
http://arxiv.org/abs/1801.09847v1
|
http://arxiv.org/pdf/1801.09847v1.pdf
|
https://github.com/IntelVCL/Open3D
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/trainable-frontend-for-robust-and-far-field
|
Trainable Frontend For Robust and Far-Field Keyword Spotting
|
1607.05666
|
http://arxiv.org/abs/1607.05666v1
|
http://arxiv.org/pdf/1607.05666v1.pdf
|
https://github.com/simongrest/kaggle-freesound-audio-tagging-2019
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/xdeepfm-combining-explicit-and-implicit
|
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
|
1803.05170
|
http://arxiv.org/abs/1803.05170v3
|
http://arxiv.org/pdf/1803.05170v3.pdf
|
https://github.com/bettenW/Tencent2019_Finals_Rank1st
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/real-time-localization-and-tracking-of
|
Real-Time Localization and Tracking of Multiple Radio-Tagged Animals with an Autonomous UAV
|
1712.01491
|
http://arxiv.org/abs/1712.01491v4
|
http://arxiv.org/pdf/1712.01491v4.pdf
|
https://github.com/AdelaideAuto-IDLab/TrackerBots/tree/master/JoFR_2019
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/adversarial-autoencoders
|
Adversarial Autoencoders
|
1511.05644
|
http://arxiv.org/abs/1511.05644v2
|
http://arxiv.org/pdf/1511.05644v2.pdf
|
https://github.com/santi-pdp/pase
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/accelerating-deep-unsupervised-domain
|
Accelerating Deep Unsupervised Domain Adaptation with Transfer Channel Pruning
|
1904.02654
|
http://arxiv.org/abs/1904.02654v1
|
http://arxiv.org/pdf/1904.02654v1.pdf
|
https://github.com/jindongwang/transferlearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
|
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
|
1506.01497
|
http://arxiv.org/abs/1506.01497v3
|
http://arxiv.org/pdf/1506.01497v3.pdf
|
https://github.com/zacks417/faster-rcnn-tf
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/stein-variational-gradient-descent-a-general
|
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
|
1608.04471
|
https://arxiv.org/abs/1608.04471v3
|
https://arxiv.org/pdf/1608.04471v3.pdf
|
https://github.com/activatedgeek/stein-gradient
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
|
Focal Loss for Dense Object Detection
|
1708.02002
|
http://arxiv.org/abs/1708.02002v2
|
http://arxiv.org/pdf/1708.02002v2.pdf
|
https://github.com/vantupham/darknet
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/context-aware-attentive-knowledge-tracing
|
Context-Aware Attentive Knowledge Tracing
|
2007.12324
|
https://arxiv.org/abs/2007.12324v1
|
https://arxiv.org/pdf/2007.12324v1.pdf
|
https://github.com/arghosh/AKT
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-estimation-of-word-representations
|
Efficient Estimation of Word Representations in Vector Space
|
1301.3781
|
http://arxiv.org/abs/1301.3781v3
|
http://arxiv.org/pdf/1301.3781v3.pdf
|
https://github.com/rohith2506/word_embeddings
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/compressing-physical-properties-of-atomic
|
Compressing physical properties of atomic species for improving predictive chemistry
|
1811.00123
|
http://arxiv.org/abs/1811.00123v1
|
http://arxiv.org/pdf/1811.00123v1.pdf
|
https://github.com/jeherr/element-encoder
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/contour-knowledge-transfer-for-salient-object
|
Contour Knowledge Transfer for Salient Object Detection
| null |
http://openaccess.thecvf.com/content_ECCV_2018/html/Xin_Li_Contour_Knowledge_Transfer_ECCV_2018_paper.html
|
http://openaccess.thecvf.com/content_ECCV_2018/papers/Xin_Li_Contour_Knowledge_Transfer_ECCV_2018_paper.pdf
|
https://github.com/lixin666/C2SNet
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/universal-language-model-fine-tuning-for-text
|
Universal Language Model Fine-tuning for Text Classification
|
1801.06146
|
http://arxiv.org/abs/1801.06146v5
|
http://arxiv.org/pdf/1801.06146v5.pdf
|
https://github.com/comicencyclo/TransferLearning_DiscriminativeFineTuning
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/restoring-negative-information-in-few-shot
|
Restoring Negative Information in Few-Shot Object Detection
|
2010.11714
|
https://arxiv.org/abs/2010.11714v2
|
https://arxiv.org/pdf/2010.11714v2.pdf
|
https://github.com/yang-yk/NP-RepMet
| true
| true
| false
|
mxnet
|
https://paperswithcode.com/paper/predictive-entropy-search-for-bayesian
|
Predictive Entropy Search for Bayesian Optimization with Unknown Constraints
|
1502.05312
|
http://arxiv.org/abs/1502.05312v2
|
http://arxiv.org/pdf/1502.05312v2.pdf
|
https://github.com/chongkewu/PESC-HPC
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/real-time-air-pollution-prediction-model
|
Real-time Air Pollution prediction model based on Spatiotemporal Big data
|
1805.00432
|
http://arxiv.org/abs/1805.00432v3
|
http://arxiv.org/pdf/1805.00432v3.pdf
|
https://github.com/vanduc103/air_analysis_v1
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
|
Focal Loss for Dense Object Detection
|
1708.02002
|
http://arxiv.org/abs/1708.02002v2
|
http://arxiv.org/pdf/1708.02002v2.pdf
|
https://github.com/yhenon/pytorch-retinanet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-spatiotemporal-features-with-3d
|
Learning Spatiotemporal Features with 3D Convolutional Networks
|
1412.0767
|
http://arxiv.org/abs/1412.0767v4
|
http://arxiv.org/pdf/1412.0767v4.pdf
|
https://github.com/AKASH2907/Content-based-Video-Recommendation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/increasingly-packing-multiple-facial
|
Increasingly Packing Multiple Facial-Informatics Modules in A Unified Deep-Learning Model via Lifelong Learning
| null |
https://dl.acm.org/doi/10.1145/3323873.3325053
|
https://dl.acm.org/doi/pdf/10.1145/3323873.3325053
|
https://github.com/ivclab/CPG
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/integralaction-pose-driven-feature
|
IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos
|
2007.06317
|
https://arxiv.org/abs/2007.06317v2
|
https://arxiv.org/pdf/2007.06317v2.pdf
|
https://github.com/arunos728/arunos728.github.io
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fully-convolutional-pixel-adaptive-image
|
Fully Convolutional Pixel Adaptive Image Denoiser
|
1807.07569
|
https://arxiv.org/abs/1807.07569v4
|
https://arxiv.org/pdf/1807.07569v4.pdf
|
https://github.com/csm9493/FC-AIDE
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/joint-3d-face-reconstruction-and-dense
|
Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network
|
1803.07835
|
http://arxiv.org/abs/1803.07835v1
|
http://arxiv.org/pdf/1803.07835v1.pdf
|
https://github.com/jimmy0087/faceai-master
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/implicit-self-consistent-description-of
|
Implicit self-consistent description of electrolyte in plane-wave density-functional theory
|
1601.03346
|
http://arxiv.org/abs/1601.03346v1
|
http://arxiv.org/pdf/1601.03346v1.pdf
|
https://github.com/henniggroup/VASPsol
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/news-headline-grouping-as-a-challenging-nlu-1
|
News Headline Grouping as a Challenging NLU Task
|
2105.05391
|
https://arxiv.org/abs/2105.05391v1
|
https://arxiv.org/pdf/2105.05391v1.pdf
|
https://github.com/tingofurro/headline_grouping
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/end-to-end-learning-of-lda-by-mirror-descent
|
End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Architecture
|
1508.03398
|
http://arxiv.org/abs/1508.03398v2
|
http://arxiv.org/pdf/1508.03398v2.pdf
|
https://github.com/jvking/bp-lda
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/an-optimization-approach-to-learning-falling
|
An Optimization Approach to Learning Falling Rule Lists
|
1710.02572
|
http://arxiv.org/abs/1710.02572v3
|
http://arxiv.org/pdf/1710.02572v3.pdf
|
https://github.com/cfchen-duke/FRLOptimization
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dueling-network-architectures-for-deep
|
Dueling Network Architectures for Deep Reinforcement Learning
|
1511.06581
|
http://arxiv.org/abs/1511.06581v3
|
http://arxiv.org/pdf/1511.06581v3.pdf
|
https://github.com/wtingda/DeepRLBreakout
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/asynchronous-methods-for-deep-reinforcement
|
Asynchronous Methods for Deep Reinforcement Learning
|
1602.01783
|
http://arxiv.org/abs/1602.01783v2
|
http://arxiv.org/pdf/1602.01783v2.pdf
|
https://github.com/wtingda/DeepRLBreakout
| false
| false
| true
|
tf
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.