paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/where-to-look-at-the-movies-analyzing-visual
|
Where to look at the movies : Analyzing visual attention to understand movie editing
|
2102.13378
|
https://arxiv.org/abs/2102.13378v1
|
https://arxiv.org/pdf/2102.13378v1.pdf
|
https://github.com/abruckert/eye_tracking_filmmaking
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/superaccurate-camera-calibration-via-inverse
|
Superaccurate Camera Calibration via Inverse Rendering
|
2003.09177
|
https://arxiv.org/abs/2003.09177v1
|
https://arxiv.org/pdf/2003.09177v1.pdf
|
https://github.com/MortenHannemose/pytorch-vfi-cft
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/soccernet-a-scalable-dataset-for-action
|
SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos
|
1804.04527
|
http://arxiv.org/abs/1804.04527v2
|
http://arxiv.org/pdf/1804.04527v2.pdf
|
https://github.com/SilvioGiancola/SoccerNet-code
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/fast-and-robust-multiple-colorchecker
|
Fast and Robust Multiple ColorChecker Detection using Deep Convolutional Neural Networks
|
1810.08639
|
http://arxiv.org/abs/1810.08639v1
|
http://arxiv.org/pdf/1810.08639v1.pdf
|
https://github.com/pedrodiamel/colorchacker-detection
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/skip-thought-vectors
|
Skip-Thought Vectors
|
1506.06726
|
http://arxiv.org/abs/1506.06726v1
|
http://arxiv.org/pdf/1506.06726v1.pdf
|
https://github.com/facebookresearch/InferSent
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vse-improving-visual-semantic-embeddings-with
|
VSE++: Improving Visual-Semantic Embeddings with Hard Negatives
|
1707.05612
|
http://arxiv.org/abs/1707.05612v4
|
http://arxiv.org/pdf/1707.05612v4.pdf
|
https://github.com/armandvilalta/Full-network-multimodal-embeddings
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/combining-monte-carlo-tree-search-and
|
Combining Monte Carlo Tree Search and Heuristic Search for Weighted Vertex Coloring
|
2304.12146
|
https://arxiv.org/abs/2304.12146v1
|
https://arxiv.org/pdf/2304.12146v1.pdf
|
https://github.com/cyril-grelier/gc_wvcp_mcts
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/decision-stream-cultivating-deep-decision
|
Decision Stream: Cultivating Deep Decision Trees
|
1704.07657
|
http://arxiv.org/abs/1704.07657v3
|
http://arxiv.org/pdf/1704.07657v3.pdf
|
https://github.com/aiff22/Decision-Stream
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/leverage-eye-movement-data-for-saliency
|
How is Gaze Influenced by Image Transformations? Dataset and Model
|
1905.06803
|
https://arxiv.org/abs/1905.06803v4
|
https://arxiv.org/pdf/1905.06803v4.pdf
|
https://github.com/CZHQuality/Sal-CFS-GAN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/addressee-and-response-selection-in-multi
|
Addressee and Response Selection in Multi-Party Conversations with Speaker Interaction RNNs
|
1709.04005
|
http://arxiv.org/abs/1709.04005v2
|
http://arxiv.org/pdf/1709.04005v2.pdf
|
https://github.com/ryanzhumich/sirnn
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/finite-sample-learning-of-moving-targets
|
Finite sample learning of moving targets
|
2408.04406
|
https://arxiv.org/abs/2408.04406v2
|
https://arxiv.org/pdf/2408.04406v2.pdf
|
https://github.com/nikovert/finite-sample-learning-of-moving-targets
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/interpret-federated-learning-with-shapley
|
Interpret Federated Learning with Shapley Values
|
1905.04519
|
https://arxiv.org/abs/1905.04519v1
|
https://arxiv.org/pdf/1905.04519v1.pdf
|
https://github.com/crownpku/federated_shap
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lenient-multi-agent-deep-reinforcement
|
Lenient Multi-Agent Deep Reinforcement Learning
|
1707.04402
|
http://arxiv.org/abs/1707.04402v2
|
http://arxiv.org/pdf/1707.04402v2.pdf
|
https://github.com/gjp1203/nui_in_madrl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/hierarchical-cross-modal-talking-face
|
Hierarchical Cross-Modal Talking Face Generationwith Dynamic Pixel-Wise Loss
|
1905.03820
|
https://arxiv.org/abs/1905.03820v1
|
https://arxiv.org/pdf/1905.03820v1.pdf
|
https://github.com/lelechen63/ATVGnet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/benchmarking-natural-language-understanding
|
Benchmarking Natural Language Understanding Services for building Conversational Agents
|
1903.05566
|
http://arxiv.org/abs/1903.05566v3
|
http://arxiv.org/pdf/1903.05566v3.pdf
|
https://github.com/lackel/hierarchical_weighted_scl
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hdltex-hierarchical-deep-learning-for-text
|
HDLTex: Hierarchical Deep Learning for Text Classification
|
1709.08267
|
http://arxiv.org/abs/1709.08267v2
|
http://arxiv.org/pdf/1709.08267v2.pdf
|
https://github.com/lackel/hierarchical_weighted_scl
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/syntaxsqlnet-syntax-tree-networks-for-complex
|
SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-DomainText-to-SQL Task
|
1810.05237
|
http://arxiv.org/abs/1810.05237v2
|
http://arxiv.org/pdf/1810.05237v2.pdf
|
https://github.com/heyanger/sqltools
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/missing-data-infill-with-automunge-1
|
Missing Data Infill with Automunge
|
2202.09484
|
https://arxiv.org/abs/2202.09484v1
|
https://arxiv.org/pdf/2202.09484v1.pdf
|
https://github.com/gatorwatt/Paper_Demonstrations/tree/main/Missing_Data_infill
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/temporal-attentive-alignment-for-video-domain
|
Temporal Attentive Alignment for Video Domain Adaptation
|
1905.10861
|
https://arxiv.org/abs/1905.10861v5
|
https://arxiv.org/pdf/1905.10861v5.pdf
|
https://github.com/olivesgatech/TA3N
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hybrid-reward-architecture-for-reinforcement
|
Hybrid Reward Architecture for Reinforcement Learning
|
1706.04208
|
http://arxiv.org/abs/1706.04208v2
|
http://arxiv.org/pdf/1706.04208v2.pdf
|
https://github.com/KhenNguyn/DoAn3-MachineLearning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/robustness-may-be-at-odds-with-accuracy
|
Robustness May Be at Odds with Accuracy
|
1805.12152
|
https://arxiv.org/abs/1805.12152v5
|
https://arxiv.org/pdf/1805.12152v5.pdf
|
https://github.com/louis2889184/pytorch-adversarial-training
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hierarchy-of-visual-words-a-learning-based
|
Hierarchy-of-Visual-Words: a Learning-based Approach for Trademark Image Retrieval
|
1908.02786
|
https://arxiv.org/abs/1908.02786v1
|
https://arxiv.org/pdf/1908.02786v1.pdf
|
https://github.com/Prograf-UFF/HoVW
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-reinforcement-learning-from-human
|
Deep reinforcement learning from human preferences
|
1706.03741
|
https://arxiv.org/abs/1706.03741v4
|
https://arxiv.org/pdf/1706.03741v4.pdf
|
https://github.com/vcharvet/project-rl
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/neural-motifs-scene-graph-parsing-with-global
|
Neural Motifs: Scene Graph Parsing with Global Context
|
1711.06640
|
http://arxiv.org/abs/1711.06640v2
|
http://arxiv.org/pdf/1711.06640v2.pdf
|
https://github.com/HCPLab-SYSU/KERN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/scene-relighting-with-illumination-estimation
|
Scene relighting with illumination estimation in the latent space on an encoder-decoder scheme
|
2006.02333
|
https://arxiv.org/abs/2006.02333v1
|
https://arxiv.org/pdf/2006.02333v1.pdf
|
https://github.com/martin-ev/2DSceneRelighting
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/m-fuse-multi-frame-fusion-for-scene-flow
|
M-FUSE: Multi-frame Fusion for Scene Flow Estimation
|
2207.05704
|
https://arxiv.org/abs/2207.05704v2
|
https://arxiv.org/pdf/2207.05704v2.pdf
|
https://github.com/cv-stuttgart/m-fuse
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fully-convolutional-networks-for-semantic-1
|
Fully Convolutional Networks for Semantic Segmentation
|
1411.4038
|
http://arxiv.org/abs/1411.4038v2
|
http://arxiv.org/pdf/1411.4038v2.pdf
|
https://github.com/giovanniguidi/FCN-keras
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/spurious-local-minima-are-common-in-two-layer
|
Spurious Local Minima are Common in Two-Layer ReLU Neural Networks
|
1712.08968
|
http://arxiv.org/abs/1712.08968v3
|
http://arxiv.org/pdf/1712.08968v3.pdf
|
https://github.com/ItaySafran/OneLayerGDconvergence
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/co-trained-convolutional-neural-networks-for
|
Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI
| null |
https://www.ncbi.nlm.nih.gov/pubmed/28850876
|
https://www.ncbi.nlm.nih.gov/pubmed/28850876
|
https://github.com/Andysis/co-trained-CADx
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/improving-retinanet-for-ct-lesion-detection
|
Improving RetinaNet for CT Lesion Detection with Dense Masks from Weak RECIST Labels
|
1906.02283
|
https://arxiv.org/abs/1906.02283v1
|
https://arxiv.org/pdf/1906.02283v1.pdf
|
https://github.com/fizyr/keras-retinanet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/one-shot-video-object-segmentation
|
One-Shot Video Object Segmentation
|
1611.05198
|
http://arxiv.org/abs/1611.05198v4
|
http://arxiv.org/pdf/1611.05198v4.pdf
|
https://github.com/kmaninis/OSVOS-caffe
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/non-turing-computations-via-malament-hogarth
|
Non-Turing computations via Malament-Hogarth space-times
|
gr-qc/0104023
|
https://arxiv.org/abs/gr-qc/0104023v2
|
https://arxiv.org/pdf/gr-qc/0104023v2.pdf
|
https://github.com/alexnieddu/Kerr-Black-Hole-Geodesics
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-chi-squared-time-frequency-discriminator
|
A chi-squared time-frequency discriminator for gravitational wave detection
|
gr-qc/0405045
|
https://arxiv.org/abs/gr-qc/0405045v2
|
https://arxiv.org/pdf/gr-qc/0405045v2.pdf
|
https://github.com/gwastro/1-ogc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/quantum-associative-memory
|
Quantum Associative Memory
|
quant-ph/9807053
|
https://arxiv.org/abs/quant-ph/9807053v1
|
https://arxiv.org/pdf/quant-ph/9807053v1.pdf
|
https://github.com/hhy37/Liquid
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/improved-simulation-of-stabilizer-circuits
|
Improved Simulation of Stabilizer Circuits
|
quant-ph/0406196
|
https://arxiv.org/abs/quant-ph/0406196v5
|
https://arxiv.org/pdf/quant-ph/0406196v5.pdf
|
https://github.com/hhy37/Liquid
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/distributed-prioritized-experience-replay
|
Distributed Prioritized Experience Replay
|
1803.00933
|
http://arxiv.org/abs/1803.00933v1
|
http://arxiv.org/pdf/1803.00933v1.pdf
|
https://github.com/neka-nat/distributed_rl
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/benchmarking-automatic-machine-learning
|
Benchmarking Automatic Machine Learning Frameworks
|
1808.06492
|
http://arxiv.org/abs/1808.06492v1
|
http://arxiv.org/pdf/1808.06492v1.pdf
|
https://github.com/ClimbsRocks/auto_ml
| false
| true
| false
|
tf
|
https://paperswithcode.com/paper/a-fofe-based-local-detection-approach-for
|
A FOFE-based Local Detection Approach for Named Entity Recognition and Mention Detection
|
1611.00801
|
http://arxiv.org/abs/1611.00801v1
|
http://arxiv.org/pdf/1611.00801v1.pdf
|
https://github.com/xmb-cipher/fofe-ner
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/nonnegative-decomposition-of-multivariate
|
Nonnegative Decomposition of Multivariate Information
|
1004.2515
|
http://arxiv.org/abs/1004.2515v1
|
http://arxiv.org/pdf/1004.2515v1.pdf
|
https://github.com/robince/partial-info-decomp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-tutorial-on-thompson-sampling
|
A Tutorial on Thompson Sampling
|
1707.02038
|
https://arxiv.org/abs/1707.02038v3
|
https://arxiv.org/pdf/1707.02038v3.pdf
|
https://github.com/iosband/ts_tutorial
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/penalizing-unfairness-in-binary
|
Penalizing Unfairness in Binary Classification
|
1707.00044
|
http://arxiv.org/abs/1707.00044v3
|
http://arxiv.org/pdf/1707.00044v3.pdf
|
https://github.com/jjgold012/lab-project-fairness
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/teacher-student-curriculum-learning
|
Teacher-Student Curriculum Learning
|
1707.00183
|
http://arxiv.org/abs/1707.00183v2
|
http://arxiv.org/pdf/1707.00183v2.pdf
|
https://github.com/tambetm/TSCL
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/text-matching-as-image-recognition
|
Text Matching as Image Recognition
|
1602.06359
|
http://arxiv.org/abs/1602.06359v1
|
http://arxiv.org/pdf/1602.06359v1.pdf
|
https://github.com/pl8787/MatchPyramid-TensorFlow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/hyperband-a-novel-bandit-based-approach-to
|
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
|
1603.06560
|
http://arxiv.org/abs/1603.06560v4
|
http://arxiv.org/pdf/1603.06560v4.pdf
|
https://github.com/zygmuntz/hyperband
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/perceptual-losses-for-real-time-style
|
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
|
1603.08155
|
http://arxiv.org/abs/1603.08155v1
|
http://arxiv.org/pdf/1603.08155v1.pdf
|
https://github.com/ksivaman/super-res
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/optimal-transport-based-machine-learning-to
|
Optimal transport-based machine learning to match specific patterns: application to the detection of molecular regulation patterns in omics data
|
2107.11192
|
https://arxiv.org/abs/2107.11192v3
|
https://arxiv.org/pdf/2107.11192v3.pdf
|
https://github.com/yen-nguyen-thi-thanh/wtot_coclust_match
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mushroomrl-simplifying-reinforcement-learning
|
MushroomRL: Simplifying Reinforcement Learning Research
|
2001.01102
|
https://arxiv.org/abs/2001.01102v2
|
https://arxiv.org/pdf/2001.01102v2.pdf
|
https://github.com/AIRLab-POLIMI/mushroom-rl
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/how-sgd-selects-the-global-minima-in-over
|
How SGD Selects the Global Minima in Over-parameterized Learning: A Dynamical Stability Perspective
| null |
http://papers.nips.cc/paper/8049-how-sgd-selects-the-global-minima-in-over-parameterized-learning-a-dynamical-stability-perspective
|
http://papers.nips.cc/paper/8049-how-sgd-selects-the-global-minima-in-over-parameterized-learning-a-dynamical-stability-perspective.pdf
|
https://github.com/leiwu1990/sgd.stability
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/extending-text-to-speech-synthesis-with
|
Extending Text-to-Speech Synthesis with Articulatory Movement Prediction using Ultrasound Tongue Imaging
|
2107.05550
|
https://arxiv.org/abs/2107.05550v1
|
https://arxiv.org/pdf/2107.05550v1.pdf
|
https://github.com/BME-SmartLab/txt2ult
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/simulaqron-a-simulator-for-developing-quantum
|
SimulaQron - A simulator for developing quantum internet software
|
1712.08032
|
http://arxiv.org/abs/1712.08032v2
|
http://arxiv.org/pdf/1712.08032v2.pdf
|
https://github.com/SoftwareQuTech/CQC-Python
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/dgm-a-deep-learning-algorithm-for-solving
|
DGM: A deep learning algorithm for solving partial differential equations
|
1708.07469
|
http://arxiv.org/abs/1708.07469v5
|
http://arxiv.org/pdf/1708.07469v5.pdf
|
https://github.com/alialaradi/DeepGalerkinMethod
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-spatiotemporal-volumetric-interpolation
|
A Spatiotemporal Volumetric Interpolation Network for 4D Dynamic Medical Image
|
2002.12680
|
https://arxiv.org/abs/2002.12680v2
|
https://arxiv.org/pdf/2002.12680v2.pdf
|
https://github.com/guoyu-niubility/SVIN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/metapruning-meta-learning-for-automatic
|
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning
|
1903.10258
|
https://arxiv.org/abs/1903.10258v3
|
https://arxiv.org/pdf/1903.10258v3.pdf
|
https://github.com/liuzechun/MetaPruning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/variational-adversarial-active-learning
|
Variational Adversarial Active Learning
|
1904.00370
|
https://arxiv.org/abs/1904.00370v3
|
https://arxiv.org/pdf/1904.00370v3.pdf
|
https://github.com/sinhasam/vaal
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-higher-order-logic-programs
|
Learning higher-order logic programs
|
1907.10953
|
https://arxiv.org/abs/1907.10953v1
|
https://arxiv.org/pdf/1907.10953v1.pdf
|
https://github.com/metagol/metagol
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/pde-net-learning-pdes-from-data
|
PDE-Net: Learning PDEs from Data
|
1710.09668
|
http://arxiv.org/abs/1710.09668v2
|
http://arxiv.org/pdf/1710.09668v2.pdf
|
https://github.com/agrundner24/pde-net-in-tf
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/x-lxmert-paint-caption-and-answer-questions
|
X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers
|
2009.11278
|
https://arxiv.org/abs/2009.11278v1
|
https://arxiv.org/pdf/2009.11278v1.pdf
|
https://github.com/allenai/x-lxmert
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/infinitygan-towards-infinite-resolution-image
|
InfinityGAN: Towards Infinite-Pixel Image Synthesis
|
2104.03963
|
https://arxiv.org/abs/2104.03963v4
|
https://arxiv.org/pdf/2104.03963v4.pdf
|
https://github.com/hubert0527/infinityGAN
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/exploring-data-aggregation-in-policy-learning
|
Exploring Data Aggregation in Policy Learning for Vision-Based Urban Autonomous Driving
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Prakash_Exploring_Data_Aggregation_in_Policy_Learning_for_Vision-Based_Urban_Autonomous_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Prakash_Exploring_Data_Aggregation_in_Policy_Learning_for_Vision-Based_Urban_Autonomous_CVPR_2020_paper.pdf
|
https://github.com/autonomousvision/data_aggregation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/graph-structured-prediction-energy-networks
|
Graph Structured Prediction Energy Networks
|
1910.14670
|
https://arxiv.org/abs/1910.14670v2
|
https://arxiv.org/pdf/1910.14670v2.pdf
|
https://github.com/cgraber/GSPEN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
|
Image-to-Image Translation with Conditional Adversarial Networks
|
1611.07004
|
http://arxiv.org/abs/1611.07004v3
|
http://arxiv.org/pdf/1611.07004v3.pdf
|
https://github.com/sidneykingsley/fyp
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/minibatch-processing-in-spiking-neural
|
Minibatch Processing in Spiking Neural Networks
|
1909.02549
|
https://arxiv.org/abs/1909.02549v1
|
https://arxiv.org/pdf/1909.02549v1.pdf
|
https://github.com/djsaunde/snn-minibatch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/stochastic-chebyshev-gradient-descent-for
|
Stochastic Chebyshev Gradient Descent for Spectral Optimization
|
1802.06355
|
http://arxiv.org/abs/1802.06355v3
|
http://arxiv.org/pdf/1802.06355v3.pdf
|
https://github.com/EiffL/SpectralFlow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learned-image-downscaling-for-upscaling-using
|
Learned Image Downscaling for Upscaling using Content Adaptive Resampler
|
1907.12904
|
https://arxiv.org/abs/1907.12904v2
|
https://arxiv.org/pdf/1907.12904v2.pdf
|
https://github.com/twice154/ofa-for-super-resolution
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
|
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
|
1506.01497
|
http://arxiv.org/abs/1506.01497v3
|
http://arxiv.org/pdf/1506.01497v3.pdf
|
https://github.com/daxiapazi/faster-rcnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/every-positive-integer-is-a-sum-of-three
|
Every positive integer is a sum of three palindromes
|
1602.06208
|
http://arxiv.org/abs/1602.06208v2
|
http://arxiv.org/pdf/1602.06208v2.pdf
|
https://github.com/TroyLaurin/PalindromeSum
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/reducing-the-training-time-of-neural-networks
|
Reducing the Training Time of Neural Networks by Partitioning
|
1511.02954
|
http://arxiv.org/abs/1511.02954v2
|
http://arxiv.org/pdf/1511.02954v2.pdf
|
https://github.com/agongt408/vbranch
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/net2net-accelerating-learning-via-knowledge
|
Net2Net: Accelerating Learning via Knowledge Transfer
|
1511.05641
|
http://arxiv.org/abs/1511.05641v4
|
http://arxiv.org/pdf/1511.05641v4.pdf
|
https://github.com/agongt408/vbranch
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/simple-non-perturbative-resummation-schemes
|
Simple non-perturbative resummation schemes beyond mean-field: case study for scalar $φ^4$ theory in 1+1 dimensions
|
1901.05483
|
http://arxiv.org/abs/1901.05483v1
|
http://arxiv.org/pdf/1901.05483v1.pdf
|
https://github.com/paro8929/Resummation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-maven-dependency-graph-a-temporal-graph
|
The Maven Dependency Graph: a Temporal Graph-based Representation of Maven Central
|
1901.05392
|
http://arxiv.org/abs/1901.05392v1
|
http://arxiv.org/pdf/1901.05392v1.pdf
|
https://github.com/tdegueul/sonar-dataset
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/adversarial-training-methods-for-network
|
Adversarial Training Methods for Network Embedding
|
1908.11514
|
https://arxiv.org/abs/1908.11514v1
|
https://arxiv.org/pdf/1908.11514v1.pdf
|
https://github.com/wonniu/AdvT4NE_WWW2019
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/central-server-free-federated-learning-over
|
Central Server Free Federated Learning over Single-sided Trust Social Networks
|
1910.04956
|
https://arxiv.org/abs/1910.04956v2
|
https://arxiv.org/pdf/1910.04956v2.pdf
|
https://github.com/FedML-AI/FedML/tree/master/fedml_experiments/standalone/decentralized
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/expert-load-matters-operating-networks-at-1
|
Expert load matters: operating networks at high accuracy and low manual effort
|
2308.05035
|
https://arxiv.org/abs/2308.05035v2
|
https://arxiv.org/pdf/2308.05035v2.pdf
|
https://github.com/salusanga/aucoc_loss
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/accurate-large-minibatch-sgd-training
|
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
|
1706.02677
|
http://arxiv.org/abs/1706.02677v2
|
http://arxiv.org/pdf/1706.02677v2.pdf
|
https://github.com/darkreapyre/HaaS-dev
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/fiber-cnn-expanding-mask-r-cnn-to-improve
|
FibeR-CNN: Expanding Mask R-CNN to Improve Image-Based Fiber Analysis
|
2006.04552
|
https://arxiv.org/abs/2006.04552v2
|
https://arxiv.org/pdf/2006.04552v2.pdf
|
https://github.com/maxfrei750/synthPIC4Python
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/knee-point-identification-based-on-trade-off
|
Knee Point Identification Based on Trade-Off Utility
|
2005.11600
|
https://arxiv.org/abs/2005.11600v1
|
https://arxiv.org/pdf/2005.11600v1.pdf
|
https://github.com/COLA-Laboratory/kpi
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/matching-networks-for-one-shot-learning
|
Matching Networks for One Shot Learning
|
1606.04080
|
http://arxiv.org/abs/1606.04080v2
|
http://arxiv.org/pdf/1606.04080v2.pdf
|
https://github.com/fujenchu/matchingNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/probabilistic-fasttext-for-multi-sense-word
|
Probabilistic FastText for Multi-Sense Word Embeddings
|
1806.02901
|
http://arxiv.org/abs/1806.02901v1
|
http://arxiv.org/pdf/1806.02901v1.pdf
|
https://github.com/benathi/multisense-prob-fasttext
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/self-supervised-visual-planning-with-temporal
|
Self-Supervised Visual Planning with Temporal Skip Connections
|
1710.05268
|
http://arxiv.org/abs/1710.05268v1
|
http://arxiv.org/pdf/1710.05268v1.pdf
|
https://github.com/CompVis/image2video-synthesis-using-cINNs
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-hitchhikers-guide-to-lda
|
The Hitchhiker's Guide to LDA
|
1908.03142
|
https://arxiv.org/abs/1908.03142v2
|
https://arxiv.org/pdf/1908.03142v2.pdf
|
https://github.com/MachineIntellect/GibbsLDA_plus
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/shufflenet-v2-practical-guidelines-for
|
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
|
1807.11164
|
http://arxiv.org/abs/1807.11164v1
|
http://arxiv.org/pdf/1807.11164v1.pdf
|
https://github.com/savageyusuff/MobilePose-Pi
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unite-unified-translation-evaluation
|
UniTE: Unified Translation Evaluation
|
2204.13346
|
https://arxiv.org/abs/2204.13346v1
|
https://arxiv.org/pdf/2204.13346v1.pdf
|
https://github.com/wanyu2018umac/UniTE
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/etjoa003/medical_imaging
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/efficient-nonparametric-statistical-inference
|
Efficient nonparametric statistical inference on population feature importance using Shapley values
|
2006.09481
|
https://arxiv.org/abs/2006.09481v1
|
https://arxiv.org/pdf/2006.09481v1.pdf
|
https://github.com/bdwilliamson/spvim_supplementary
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/searching-for-mobilenetv3
|
Searching for MobileNetV3
|
1905.02244
|
https://arxiv.org/abs/1905.02244v5
|
https://arxiv.org/pdf/1905.02244v5.pdf
|
https://github.com/rwightman/efficientnet-jax
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/wiring-up-vision-minimizing-supervised
|
Wiring Up Vision: Minimizing Supervised Synaptic Updates Needed to Produce a Primate Ventral Stream
| null |
https://openreview.net/forum?id=5i4vRgoZauw
|
https://openreview.net/pdf?id=5i4vRgoZauw
|
https://github.com/franzigeiger/training_reductions
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/coha-ntt-a-configurable-hardware-accelerator
|
CoHA-NTT: A Configurable Hardware Accelerator for NTT-based Polynomial Multiplication
| null |
https://eprint.iacr.org/2021/1527
|
https://eprint.iacr.org/2021/1527.pdf
|
https://github.com/kemalderya/pqc-param-ntt
| false
| true
| false
|
none
|
https://paperswithcode.com/paper/physics-informed-neural-networks-for-non
|
Physics-Informed Neural Networks for Non-linear System Identification for Power System Dynamics
|
2004.04026
|
https://arxiv.org/abs/2004.04026v2
|
https://arxiv.org/pdf/2004.04026v2.pdf
|
https://github.com/jbesty/PINN_system_identification
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/distilling-model-knowledge
|
Distilling Model Knowledge
|
1510.02437
|
http://arxiv.org/abs/1510.02437v1
|
http://arxiv.org/pdf/1510.02437v1.pdf
|
https://github.com/gpapamak/distilling_model_knowledge
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/effective-obstruction-to-lifting-tate-classes
|
Effective obstruction to lifting Tate classes from positive characteristic
|
2003.11037
|
https://arxiv.org/abs/2003.11037v3
|
https://arxiv.org/pdf/2003.11037v3.pdf
|
https://github.com/edgarcosta/crystalline_obstruction
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/StillKeepTry/Transformer-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-importance-of-capturing-a-sufficient
|
On the Importance of Capturing a Sufficient Diversity of Perspective for the Classification of micro-PCBs
|
2101.11164
|
https://arxiv.org/abs/2101.11164v1
|
https://arxiv.org/pdf/2101.11164v1.pdf
|
https://github.com/AdamByerly/micro-pcb-analysis
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/dropout-as-a-bayesian-approximation
|
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
|
1506.02142
|
http://arxiv.org/abs/1506.02142v6
|
http://arxiv.org/pdf/1506.02142v6.pdf
|
https://github.com/cdebeunne/uncertainties_CNN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/gaussianprocessesjl-a-nonparametric-bayes
|
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
|
1812.09064
|
https://arxiv.org/abs/1812.09064v2
|
https://arxiv.org/pdf/1812.09064v2.pdf
|
https://github.com/UnofficialJuliaMirrorSnapshots/GaussianProcesses.jl-891a1506-143c-57d2-908e-e1f8e92e6de9
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/tractable-higher-order-under-approximating-ae
|
Tractable higher-order under-approximating AE extensions for non-linear systems
|
2101.11536
|
https://arxiv.org/abs/2101.11536v1
|
https://arxiv.org/pdf/2101.11536v1.pdf
|
https://github.com/cosynus-lix/RINO
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/lightweight-probabilistic-deep-networks
|
Lightweight Probabilistic Deep Networks
|
1805.11327
|
http://arxiv.org/abs/1805.11327v1
|
http://arxiv.org/pdf/1805.11327v1.pdf
|
https://github.com/cdebeunne/uncertainties_CNN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/reducing-complexity-and-unidentifiability
|
Reducing complexity and unidentifiability when modelling human atrial cells
|
2001.10954
|
https://arxiv.org/abs/2001.10954v1
|
https://arxiv.org/pdf/2001.10954v1.pdf
|
https://github.com/charleshouston/ion-channel-ABC
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/model-agnostic-meta-learning-for-fast
|
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
|
1703.03400
|
http://arxiv.org/abs/1703.03400v3
|
http://arxiv.org/pdf/1703.03400v3.pdf
|
https://github.com/MoritzTaylor/maml-rl-tf2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/robust-person-re-identification-by-modelling
|
Robust Person Re-Identification by Modelling Feature Uncertainty
| null |
http://openaccess.thecvf.com/content_ICCV_2019/html/Yu_Robust_Person_Re-Identification_by_Modelling_Feature_Uncertainty_ICCV_2019_paper.html
|
http://openaccess.thecvf.com/content_ICCV_2019/papers/Yu_Robust_Person_Re-Identification_by_Modelling_Feature_Uncertainty_ICCV_2019_paper.pdf
|
https://github.com/TianyuanYu/DistributionNet
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/hierarchical-encoding-of-sequential-data-with
|
Hierarchical Encoding of Sequential Data With Compact and Sub-Linear Storage Cost
| null |
http://openaccess.thecvf.com/content_ICCV_2019/html/Le_Hierarchical_Encoding_of_Sequential_Data_With_Compact_and_Sub-Linear_Storage_ICCV_2019_paper.html
|
http://openaccess.thecvf.com/content_ICCV_2019/papers/Le_Hierarchical_Encoding_of_Sequential_Data_With_Compact_and_Sub-Linear_Storage_ICCV_2019_paper.pdf
|
https://github.com/intellhave/HESSL
| true
| true
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.