diffsketcher / README.md
jree423's picture
Upload folder using huggingface_hub
a3ca91d verified
|
raw
history blame
1.79 kB
---
language:
- en
license: mit
library_name: diffvg
tags:
- vector-graphics
- svg
- text-to-image
- diffusion
- stable-diffusion
pipeline_tag: text-to-image
inference: true
---
# DiffSketcher
**Text-guided vector graphics synthesis**
## Model Description
DiffSketcher is a vector graphics model that converts text descriptions into scalable vector graphics (SVG). It was developed based on the research from the [original repository](https://github.com/ximinng/DiffSketcher) and adapted for the Hugging Face ecosystem.
## How to Use
You can use this model through the Hugging Face Inference API:
```python
import requests
import base64
from PIL import Image
import io
API_URL = "https://api-inference.huggingface.co/models/jree423/diffsketcher"
headers = {"Authorization": "Bearer YOUR_API_TOKEN"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Example
payload = {"prompt": "a house with a chimney"}
output = query(payload)
# Save SVG
with open("output.svg", "w") as f:
f.write(output["svg"])
# Save image
image_data = base64.b64decode(output["image"])
image = Image.open(io.BytesIO(image_data))
image.save("output.png")
```
## Model Parameters
* `prompt` (string, required): Text description of the desired output
* `negative_prompt` (string, optional): Text to avoid in the generation
* `num_paths` (integer, optional): Number of paths in the SVG
* `guidance_scale` (float, optional): Guidance scale for the diffusion model
* `seed` (integer, optional): Random seed for reproducibility
## Limitations
* The model works best with descriptive, clear prompts
* Complex scenes may not be rendered with perfect accuracy
* Generation time can vary based on the complexity of the prompt