link2431's picture
Update README.md
2e7fe4b verified
metadata
library_name: transformers
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-roberta-es-2025-II
    results: []

sentiment-roberta-es-2025-II

This model is a fine-tuned version of xlm-roberta-large on the Tweets dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8121
  • Accuracy: 0.8826
  • Precision: 0.8829
  • Recall: 0.8826
  • F1: 0.8820

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6043 1.0 656 0.6682 0.8826 0.8824 0.8826 0.8825
0.5065 2.0 1312 0.6298 0.8720 0.8721 0.8720 0.8720
0.4613 3.0 1968 0.6470 0.8826 0.8889 0.8826 0.8832
0.2488 4.0 2624 0.7832 0.8765 0.8811 0.8765 0.8771
0.149 5.0 3280 0.8121 0.8826 0.8829 0.8826 0.8820

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1