|
|
--- |
|
|
language: cs |
|
|
language_name: Czech |
|
|
language_family: slavic_west |
|
|
tags: |
|
|
- wikilangs |
|
|
- nlp |
|
|
- tokenizer |
|
|
- embeddings |
|
|
- n-gram |
|
|
- markov |
|
|
- wikipedia |
|
|
- feature-extraction |
|
|
- sentence-similarity |
|
|
- tokenization |
|
|
- n-grams |
|
|
- markov-chain |
|
|
- text-mining |
|
|
- fasttext |
|
|
- babelvec |
|
|
- vocabulous |
|
|
- vocabulary |
|
|
- monolingual |
|
|
- family-slavic_west |
|
|
license: mit |
|
|
library_name: wikilangs |
|
|
pipeline_tag: text-generation |
|
|
datasets: |
|
|
- omarkamali/wikipedia-monthly |
|
|
dataset_info: |
|
|
name: wikipedia-monthly |
|
|
description: Monthly snapshots of Wikipedia articles across 300+ languages |
|
|
metrics: |
|
|
- name: best_compression_ratio |
|
|
type: compression |
|
|
value: 4.591 |
|
|
- name: best_isotropy |
|
|
type: isotropy |
|
|
value: 0.7988 |
|
|
- name: vocabulary_size |
|
|
type: vocab |
|
|
value: 0 |
|
|
generated: 2026-01-08 |
|
|
--- |
|
|
|
|
|
# Czech - Wikilangs Models |
|
|
## Comprehensive Research Report & Full Ablation Study |
|
|
|
|
|
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Czech** Wikipedia data. |
|
|
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. |
|
|
|
|
|
## ๐ Repository Contents |
|
|
|
|
|
### Models & Assets |
|
|
|
|
|
- Tokenizers (8k, 16k, 32k, 64k) |
|
|
- N-gram models (2, 3, 4, 5-gram) |
|
|
- Markov chains (context of 1, 2, 3, 4 and 5) |
|
|
- Subword N-gram and Markov chains |
|
|
- Embeddings in various sizes and dimensions (aligned and unaligned) |
|
|
- Language Vocabulary |
|
|
- Language Statistics |
|
|
|
|
|
 |
|
|
|
|
|
### Analysis and Evaluation |
|
|
|
|
|
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation) |
|
|
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) |
|
|
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation) |
|
|
- [4. Vocabulary Analysis](#4-vocabulary-analysis) |
|
|
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) |
|
|
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) |
|
|
- [7. Summary & Recommendations](#7-summary--recommendations) |
|
|
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) |
|
|
- [Visualizations Index](#visualizations-index) |
|
|
|
|
|
--- |
|
|
## 1. Tokenizer Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |
|
|
|------------|-------------|---------------|----------|--------------| |
|
|
| **8k** | 3.417x | 3.42 | 0.0769% | 2,893,388 | |
|
|
| **16k** | 3.845x | 3.85 | 0.0865% | 2,570,989 | |
|
|
| **32k** | 4.245x | 4.25 | 0.0955% | 2,328,840 | |
|
|
| **64k** | 4.591x ๐ | 4.59 | 0.1033% | 2,153,192 | |
|
|
|
|
|
### Tokenization Examples |
|
|
|
|
|
Below are sample sentences tokenized with each vocabulary size: |
|
|
|
|
|
**Sample 1:** `<tr> Souvisejรญcรญ ฤlรกnky Seznam kulturnรญch pamรกtek v okrese Znojmo Externรญ odkazy...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โ< tr > โsouvisejรญcรญ โฤlรกnky โseznam โkultur nรญch โpam รกtek ... (+17 more)` | 27 | |
|
|
| 16k | `โ< tr > โsouvisejรญcรญ โฤlรกnky โseznam โkulturnรญch โpamรกtek โv โokrese ... (+13 more)` | 23 | |
|
|
| 32k | `โ< tr > โsouvisejรญcรญ โฤlรกnky โseznam โkulturnรญch โpamรกtek โv โokrese ... (+11 more)` | 21 | |
|
|
| 64k | `โ< tr > โsouvisejรญcรญ โฤlรกnky โseznam โkulturnรญch โpamรกtek โv โokrese ... (+11 more)` | 21 | |
|
|
|
|
|
**Sample 2:** `Mirovice <tr> Sochovice <tr> Souvisejรญcรญ ฤlรกnky Seznam kulturnรญch pamรกtek v okre...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โmi rovice โ< tr > โso ch ovice โ< tr ... (+17 more)` | 27 | |
|
|
| 16k | `โmi rovice โ< tr > โso chovice โ< tr > ... (+14 more)` | 24 | |
|
|
| 32k | `โmi rovice โ< tr > โso chovice โ< tr > ... (+14 more)` | 24 | |
|
|
| 64k | `โmi rovice โ< tr > โso chovice โ< tr > ... (+14 more)` | 24 | |
|
|
|
|
|
**Sample 3:** `Sabra mลฏลพe bรฝt: sabra โ hebrejskรฉ slovo Sabra (tank) Sabra โ sรญdlo v Libanonu, d...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โsa bra โmลฏลพe โbรฝt : โsa bra โโ โhebrej skรฉ ... (+22 more)` | 32 | |
|
|
| 16k | `โsa bra โmลฏลพe โbรฝt : โsa bra โโ โhebrej skรฉ ... (+21 more)` | 31 | |
|
|
| 32k | `โsa bra โmลฏลพe โbรฝt : โsa bra โโ โhebrejskรฉ โslovo ... (+17 more)` | 27 | |
|
|
| 64k | `โsa bra โmลฏลพe โbรฝt : โsa bra โโ โhebrejskรฉ โslovo ... (+15 more)` | 25 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Compression:** 64k achieves 4.591x compression |
|
|
- **Lowest UNK Rate:** 8k with 0.0769% unknown tokens |
|
|
- **Trade-off:** Larger vocabularies improve compression but increase model size |
|
|
- **Recommendation:** 32k vocabulary provides optimal balance for production use |
|
|
|
|
|
--- |
|
|
## 2. N-gram Model Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |
|
|
|--------|---------|------------|---------|----------------|------------------|-------------------| |
|
|
| **2-gram** | Word | 644,039 | 19.30 | 4,952,358 | 4.8% | 11.9% | |
|
|
| **2-gram** | Subword | 449 ๐ | 8.81 | 30,223 | 53.9% | 98.0% | |
|
|
| **3-gram** | Word | 2,339,059 | 21.16 | 8,925,525 | 2.6% | 6.4% | |
|
|
| **3-gram** | Subword | 4,755 | 12.22 | 255,109 | 16.7% | 54.3% | |
|
|
| **4-gram** | Word | 5,475,376 | 22.38 | 14,408,434 | 1.3% | 3.9% | |
|
|
| **4-gram** | Subword | 32,796 | 15.00 | 1,646,964 | 6.8% | 24.8% | |
|
|
| **5-gram** | Word | 4,645,198 | 22.15 | 10,221,820 | 1.0% | 3.6% | |
|
|
| **5-gram** | Subword | 160,592 | 17.29 | 6,437,902 | 3.7% | 13.8% | |
|
|
|
|
|
### Top 5 N-grams by Size |
|
|
|
|
|
**2-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `v roce` | 1,319,715 | |
|
|
| 2 | `externรญ odkazy` | 445,741 | |
|
|
| 3 | `odkazy reference` | 238,320 | |
|
|
| 4 | `reference externรญ` | 226,335 | |
|
|
| 5 | `v letech` | 212,278 | |
|
|
|
|
|
**3-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `reference externรญ odkazy` | 226,294 | |
|
|
| 2 | `odkazy reference externรญ` | 124,877 | |
|
|
| 3 | `v roce v` | 123,855 | |
|
|
| 4 | `v roce se` | 91,582 | |
|
|
| 5 | `v roce byl` | 64,824 | |
|
|
|
|
|
**4-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `odkazy reference externรญ odkazy` | 124,850 | |
|
|
| 2 | `odkazy reference souvisejรญcรญ ฤlรกnky` | 42,127 | |
|
|
| 3 | `v roce v roce` | 34,075 | |
|
|
| 4 | `reference externรญ odkazy v` | 29,798 | |
|
|
| 5 | `externรญ odkazy oficiรกlnรญ strรกnky` | 20,103 | |
|
|
|
|
|
**5-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `odkazy reference externรญ odkazy v` | 16,236 | |
|
|
| 2 | `odkazy reference literatura externรญ odkazy` | 12,685 | |
|
|
| 3 | `reference externรญ odkazy oficiรกlnรญ strรกnky` | 11,834 | |
|
|
| 4 | `historie prvnรญ pรญsemnรก zmรญnka o` | 11,754 | |
|
|
| 5 | `reference externรญ odkazy v okrese` | 11,425 | |
|
|
|
|
|
**2-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `a _` | 24,781,439 | |
|
|
| 2 | `_ p` | 22,589,509 | |
|
|
| 3 | `e _` | 22,268,109 | |
|
|
| 4 | `_ s` | 22,095,879 | |
|
|
| 5 | `_ v` | 19,926,387 | |
|
|
|
|
|
**3-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `n รญ _` | 7,673,842 | |
|
|
| 2 | `_ p o` | 7,582,650 | |
|
|
| 3 | `_ v _` | 7,272,309 | |
|
|
| 4 | `n a _` | 6,690,107 | |
|
|
| 5 | `_ a _` | 6,501,417 | |
|
|
|
|
|
**4-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ n a _` | 3,511,209 | |
|
|
| 2 | `_ s e _` | 3,364,693 | |
|
|
| 3 | `_ p r o` | 3,186,267 | |
|
|
| 4 | `_ b y l` | 2,542,448 | |
|
|
| 5 | `รฝ c h _` | 2,252,305 | |
|
|
|
|
|
**5-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ k t e r` | 1,412,346 | |
|
|
| 2 | `_ r o c e` | 1,383,042 | |
|
|
| 3 | `_ v _ r o` | 1,382,611 | |
|
|
| 4 | `r o c e _` | 1,354,432 | |
|
|
| 5 | `v _ r o c` | 1,321,210 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Perplexity:** 2-gram (subword) with 449 |
|
|
- **Entropy Trend:** Decreases with larger n-grams (more predictable) |
|
|
- **Coverage:** Top-1000 patterns cover ~14% of corpus |
|
|
- **Recommendation:** 4-gram or 5-gram for best predictive performance |
|
|
|
|
|
--- |
|
|
## 3. Markov Chain Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |
|
|
|---------|---------|-------------|------------|------------------|-----------------|----------------| |
|
|
| **1** | Word | 1.0698 | 2.099 | 16.20 | 3,817,910 | 0.0% | |
|
|
| **1** | Subword | 1.2123 | 2.317 | 8.62 | 14,369 | 0.0% | |
|
|
| **2** | Word | 0.3832 | 1.304 | 2.35 | 61,779,051 | 61.7% | |
|
|
| **2** | Subword | 0.6716 | 1.593 | 4.71 | 123,767 | 32.8% | |
|
|
| **3** | Word | 0.1433 | 1.104 | 1.31 | 144,949,424 | 85.7% | |
|
|
| **3** | Subword | 0.7660 | 1.701 | 4.77 | 583,275 | 23.4% | |
|
|
| **4** | Word | 0.0564 ๐ | 1.040 | 1.10 | 189,649,924 | 94.4% | |
|
|
| **4** | Subword | 0.7409 | 1.671 | 4.00 | 2,782,368 | 25.9% | |
|
|
|
|
|
### Generated Text Samples (Word-based) |
|
|
|
|
|
Below are text samples generated from each word-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `v podobฤ vystavฤn byl opฤtovnฤ pohลbena ve dveลรญch nฤkterรฝch pลรญpadech mลฏลพe vytvoลit jedinรฉ dopravnรญ...` |
|
|
2. `a pลรญsluลกnรญk starรฉ mฤsto zbiroh ลพiva je americkรฝ teoretickรฝ kvantovรฝ stav potrvรก v lรฉtฤ odeลกel na` |
|
|
3. `na fakt ลพe nemฤl v ฤervenci i z pลฏvodnรญch 113 120 metrลฏ vysokรฉm tlaku na vรฝchodฤ` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `v roce lidรฉ 6 prosince praha byl michal kraus ฤssd ฤssd 48 rychnov nad knฤลพnou kaple stojรญ` |
|
|
2. `externรญ odkazy jihovรฝchodnรญ evropy jihozรกpadnรญ asie kavkazu ฤรญny sibiลe vรฝchodnรญ asie hustฤ chlupatรก...` |
|
|
3. `odkazy reference externรญ odkazy sdruลพenรญ na praze 4 rozhovor vznikl v roce kde bojoval proti ostrogรณ...` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `reference externรญ odkazy v ternopilskรฉ oblasti na ลece strypa v historickรฉm regionu hornรญ luลพice mim...` |
|
|
2. `odkazy reference externรญ odkazy speleologickรก spoleฤnost vลกevฤd romantismu hudebnรญ skladatelรฉ klavรญr...` |
|
|
3. `v roce v angliฤtinฤ se pro celou skupinu alfred crompton catherine musinsky jose bonaparte bhart anj...` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `odkazy reference externรญ odkazy strategie sรฉrie` |
|
|
2. `odkazy reference souvisejรญcรญ ฤlรกnky fotografie v norsku externรญ odkazy na seznamu svฤtovรฉho dฤdictvรญ...` |
|
|
3. `v roce v roce v praze pilotnรญ ลกkolu druhรก svฤtovรก vรกlka po roce vojenskรฉ sluลพby v polskรฉ armรกdฤ prot...` |
|
|
|
|
|
|
|
|
### Generated Text Samples (Subword-based) |
|
|
|
|
|
Below are text samples generated from each subword-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `_hraloponodovo._` |
|
|
2. `os_zu_va_vu_dulo` |
|
|
3. `ekodici_micl_v_s` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `a_stลรญjna_se_rozh` |
|
|
2. `_pลรญฤku_uraven_pe` |
|
|
3. `e_na_vรญtlickรก_hov` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `nรญ_nejฤastoru_o_sp` |
|
|
2. `_polik_v_com_trans` |
|
|
3. `_v_195_zรบฤasnรก_nรกz` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `_na_v_nicmรฉnฤ_chlaz` |
|
|
2. `_se_proje_asistenci` |
|
|
3. `_pro_pozdnฤ,_lze_sa` |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Predictability:** Context-4 (word) with 94.4% predictability |
|
|
- **Branching Factor:** Decreases with context size (more deterministic) |
|
|
- **Memory Trade-off:** Larger contexts require more storage (2,782,368 contexts) |
|
|
- **Recommendation:** Context-3 or Context-4 for text generation |
|
|
|
|
|
--- |
|
|
## 4. Vocabulary Analysis |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Statistics |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Vocabulary Size | 1,830,714 | |
|
|
| Total Tokens | 237,612,209 | |
|
|
| Mean Frequency | 129.79 | |
|
|
| Median Frequency | 5 | |
|
|
| Frequency Std Dev | 9362.17 | |
|
|
|
|
|
### Most Common Words |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | v | 7,396,110 | |
|
|
| 2 | a | 6,633,731 | |
|
|
| 3 | na | 3,536,561 | |
|
|
| 4 | se | 3,396,490 | |
|
|
| 5 | je | 2,110,163 | |
|
|
| 6 | s | 1,781,636 | |
|
|
| 7 | z | 1,747,028 | |
|
|
| 8 | do | 1,440,810 | |
|
|
| 9 | roce | 1,383,007 | |
|
|
| 10 | ve | 1,284,897 | |
|
|
|
|
|
### Least Common Words (from vocabulary) |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | mihty | 2 | |
|
|
| 2 | socionaut | 2 | |
|
|
| 3 | mafjar | 2 | |
|
|
| 4 | vlta | 2 | |
|
|
| 5 | havlรกtkovรก | 2 | |
|
|
| 6 | makbรบsu | 2 | |
|
|
| 7 | propfanลฏ | 2 | |
|
|
| 8 | propfanu | 2 | |
|
|
| 9 | ochmeloff | 2 | |
|
|
| 10 | luncaศi | 2 | |
|
|
|
|
|
### Zipf's Law Analysis |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Zipf Coefficient | 0.9138 | |
|
|
| Rยฒ (Goodness of Fit) | 0.997539 | |
|
|
| Adherence Quality | **excellent** | |
|
|
|
|
|
### Coverage Analysis |
|
|
|
|
|
| Top N Words | Coverage | |
|
|
|-------------|----------| |
|
|
| Top 100 | 27.1% | |
|
|
| Top 1,000 | 45.7% | |
|
|
| Top 5,000 | 63.0% | |
|
|
| Top 10,000 | 70.6% | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Zipf Compliance:** Rยฒ=0.9975 indicates excellent adherence to Zipf's law |
|
|
- **High Frequency Dominance:** Top 100 words cover 27.1% of corpus |
|
|
- **Long Tail:** 1,820,714 words needed for remaining 29.4% coverage |
|
|
|
|
|
--- |
|
|
## 5. Word Embeddings Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.1 Cross-Lingual Alignment |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.2 Model Comparison |
|
|
|
|
|
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |
|
|
|-------|-----------|----------|------------------|---------------|----------------| |
|
|
| **mono_32d** | 32 | 0.7988 | 0.3622 | N/A | N/A | |
|
|
| **mono_64d** | 64 | 0.7835 | 0.2893 | N/A | N/A | |
|
|
| **mono_128d** | 128 | 0.7363 | 0.2299 | N/A | N/A | |
|
|
| **aligned_32d** | 32 | 0.7988 ๐ | 0.3646 | 0.3500 | 0.7360 | |
|
|
| **aligned_64d** | 64 | 0.7835 | 0.2898 | 0.5900 | 0.8980 | |
|
|
| **aligned_128d** | 128 | 0.7363 | 0.2271 | 0.7320 | 0.9520 | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Isotropy:** aligned_32d with 0.7988 (more uniform distribution) |
|
|
- **Semantic Density:** Average pairwise similarity of 0.2938. Lower values indicate better semantic separation. |
|
|
- **Alignment Quality:** Aligned models achieve up to 73.2% R@1 in cross-lingual retrieval. |
|
|
- **Recommendation:** 128d aligned for best cross-lingual performance |
|
|
|
|
|
--- |
|
|
## 6. Morphological Analysis (Experimental) |
|
|
|
|
|
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. |
|
|
|
|
|
### 6.1 Productivity & Complexity |
|
|
|
|
|
| Metric | Value | Interpretation | Recommendation | |
|
|
|--------|-------|----------------|----------------| |
|
|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis | |
|
|
| Idiomaticity Gap | **-0.741** | Low formulaic content | - | |
|
|
|
|
|
### 6.2 Affix Inventory (Productive Units) |
|
|
|
|
|
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. |
|
|
|
|
|
#### Productive Prefixes |
|
|
| Prefix | Examples | |
|
|
|--------|----------| |
|
|
| `-ne` | nezamรญtl, neomorf, nenapรกjenรฝm | |
|
|
| `-po` | poลกtulky, ponorลกลฅovรกnรญ, powerkiting | |
|
|
|
|
|
#### Productive Suffixes |
|
|
| Suffix | Examples | |
|
|
|--------|----------| |
|
|
| `-em` | charmsem, treitschkem, holtem | |
|
|
| `-ch` | orbitalech, lekebusch, sklรญzenรฝch | |
|
|
| `-ho` | vladivostockรฉho, sertoliho, cenokarpnรญho | |
|
|
| `-ou` | hobgarskou, vรฝfukovou, robotou | |
|
|
|
|
|
### 6.3 Bound Stems (Lexical Roots) |
|
|
|
|
|
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. |
|
|
|
|
|
| Stem | Cohesion | Substitutability | Examples | |
|
|
|------|----------|------------------|----------| |
|
|
| `ovรฝc` | 2.16x | 487 contexts | ovรฝch, xovรฝch, novรฝch | |
|
|
| `skรฉh` | 2.15x | 392 contexts | skรฉho, lskรฉho, urskรฉho | |
|
|
| `skรฝc` | 1.97x | 237 contexts | skรฝch, skรฝcov, tskรฝch | |
|
|
| `ickรฝ` | 1.57x | 496 contexts | tickรฝ, bickรฝ, รบpickรฝ | |
|
|
| `nskรฉ` | 1.53x | 491 contexts | anskรฉ, inskรฉ, รญnskรฉ | |
|
|
| `ovรกn` | 1.44x | 594 contexts | ovรกnรญ, kovรกn, zovรกnรญ | |
|
|
| `ickรฉ` | 1.46x | 499 contexts | tickรฉ, lickรฉ, mickรฉ | |
|
|
| `ledn` | 1.59x | 250 contexts | lednu, ledna, lednรฝ | |
|
|
| `itel` | 1.36x | 634 contexts | nitel, litel, pitel | |
|
|
| `chรกz` | 1.52x | 287 contexts | chรกzรญ, schรกzรญ, ochรกzรญ | |
|
|
| `dkaz` | 2.66x | 23 contexts | odkaz, odkaze, odkazy | |
|
|
| `xter` | 1.81x | 76 contexts | exter, xterm, extern | |
|
|
|
|
|
### 6.4 Affix Compatibility (Co-occurrence) |
|
|
|
|
|
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. |
|
|
|
|
|
| Prefix | Suffix | Frequency | Examples | |
|
|
|--------|--------|-----------|----------| |
|
|
| `-ne` | `-ch` | 14 words | nepropouลกtฤjรญcรญch, netermรญnovanรฝch | |
|
|
| `-ne` | `-ho` | 10 words | nejpokroฤilejลกรญho, nezpochybnitelnรฉho | |
|
|
| `-ne` | `-ou` | 9 words | nestejnou, nerozลกiลitelnou | |
|
|
| `-po` | `-ho` | 9 words | podmรญnkovรฉho, polลกtรกลovitรฉho | |
|
|
| `-po` | `-ch` | 7 words | pohodlnฤjลกรญch, polohovkรกch | |
|
|
| `-po` | `-ou` | 6 words | ponitranskou, pomรกtnou | |
|
|
| `-po` | `-em` | 3 words | pollackem, povลรญslem | |
|
|
|
|
|
### 6.5 Recursive Morpheme Segmentation |
|
|
|
|
|
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). |
|
|
|
|
|
| Word | Suggested Split | Confidence | Stem | |
|
|
|------|-----------------|------------|------| |
|
|
| nedoloลพenou | **`ne-doloลพen-ou`** | 6.0 | `doloลพen` | |
|
|
| nepochybovala | **`ne-po-chybovala`** | 6.0 | `chybovala` | |
|
|
| nepostaral | **`ne-po-staral`** | 6.0 | `staral` | |
|
|
| nacionรกlem | **`nacionรกl-em`** | 4.5 | `nacionรกl` | |
|
|
| chimentiho | **`chimenti-ho`** | 4.5 | `chimenti` | |
|
|
| prostonรกrodnรญho | **`prostonรกrodnรญ-ho`** | 4.5 | `prostonรกrodnรญ` | |
|
|
| klokotskรฝch | **`klokotskรฝ-ch`** | 4.5 | `klokotskรฝ` | |
|
|
| bibliografickรฉho | **`bibliografickรฉ-ho`** | 4.5 | `bibliografickรฉ` | |
|
|
| nesvฤdฤily | **`ne-svฤdฤily`** | 4.5 | `svฤdฤily` | |
|
|
| nenavรกzali | **`ne-navรกzali`** | 4.5 | `navรกzali` | |
|
|
| ibragimovem | **`ibragimov-em`** | 4.5 | `ibragimov` | |
|
|
| zemฤploลกskรฝch | **`zemฤploลกskรฝ-ch`** | 4.5 | `zemฤploลกskรฝ` | |
|
|
| hlinรญkovรฝch | **`hlinรญkovรฝ-ch`** | 4.5 | `hlinรญkovรฝ` | |
|
|
| etylenglykolem | **`etylenglykol-em`** | 4.5 | `etylenglykol` | |
|
|
| mnohosamicovรฉho | **`mnohosamicovรฉ-ho`** | 4.5 | `mnohosamicovรฉ` | |
|
|
|
|
|
### 6.6 Linguistic Interpretation |
|
|
|
|
|
> **Automated Insight:** |
|
|
The language Czech shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. |
|
|
|
|
|
--- |
|
|
## 7. Summary & Recommendations |
|
|
|
|
|
 |
|
|
|
|
|
### Production Recommendations |
|
|
|
|
|
| Component | Recommended | Rationale | |
|
|
|-----------|-------------|-----------| |
|
|
| Tokenizer | **64k BPE** | Best compression (4.59x) | |
|
|
| N-gram | **2-gram** | Lowest perplexity (449) | |
|
|
| Markov | **Context-4** | Highest predictability (94.4%) | |
|
|
| Embeddings | **100d** | Balanced semantic capture and isotropy | |
|
|
|
|
|
|
|
|
--- |
|
|
## Appendix: Metrics Glossary & Interpretation Guide |
|
|
|
|
|
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. |
|
|
|
|
|
### Tokenizer Metrics |
|
|
|
|
|
**Compression Ratio** |
|
|
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. |
|
|
> |
|
|
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. |
|
|
> |
|
|
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. |
|
|
|
|
|
**Average Token Length (Fertility)** |
|
|
> *Definition:* Mean number of characters per token produced by the tokenizer. |
|
|
> |
|
|
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. |
|
|
> |
|
|
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. |
|
|
|
|
|
**Unknown Token Rate (OOV Rate)** |
|
|
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. |
|
|
> |
|
|
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. |
|
|
> |
|
|
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. |
|
|
|
|
|
### N-gram Model Metrics |
|
|
|
|
|
**Perplexity** |
|
|
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. |
|
|
> |
|
|
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. |
|
|
> |
|
|
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. |
|
|
|
|
|
**Entropy** |
|
|
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. |
|
|
> |
|
|
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. |
|
|
> |
|
|
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. |
|
|
|
|
|
**Coverage (Top-K)** |
|
|
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. |
|
|
> |
|
|
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. |
|
|
> |
|
|
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. |
|
|
|
|
|
### Markov Chain Metrics |
|
|
|
|
|
**Average Entropy** |
|
|
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. |
|
|
> |
|
|
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). |
|
|
> |
|
|
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. |
|
|
|
|
|
**Branching Factor** |
|
|
> *Definition:* Average number of unique next tokens observed for each context. |
|
|
> |
|
|
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). |
|
|
> |
|
|
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. |
|
|
|
|
|
**Predictability** |
|
|
> *Definition:* Derived metric: (1 - normalized_entropy) ร 100%. Indicates how deterministic the model's predictions are. |
|
|
> |
|
|
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. |
|
|
> |
|
|
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. |
|
|
|
|
|
### Vocabulary & Zipf's Law Metrics |
|
|
|
|
|
**Zipf's Coefficient** |
|
|
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. |
|
|
> |
|
|
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. |
|
|
> |
|
|
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. |
|
|
|
|
|
**Rยฒ (Coefficient of Determination)** |
|
|
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. |
|
|
> |
|
|
> *Intuition:* Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. |
|
|
> |
|
|
> *What to seek:* Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. |
|
|
|
|
|
**Vocabulary Coverage** |
|
|
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. |
|
|
> |
|
|
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. |
|
|
> |
|
|
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. |
|
|
|
|
|
### Word Embedding Metrics |
|
|
|
|
|
**Isotropy** |
|
|
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. |
|
|
> |
|
|
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. |
|
|
> |
|
|
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. |
|
|
|
|
|
**Average Norm** |
|
|
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. |
|
|
> |
|
|
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. |
|
|
> |
|
|
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). |
|
|
|
|
|
**Cosine Similarity** |
|
|
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). |
|
|
> |
|
|
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. |
|
|
> |
|
|
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. |
|
|
|
|
|
**t-SNE Visualization** |
|
|
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. |
|
|
> |
|
|
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. |
|
|
> |
|
|
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. |
|
|
|
|
|
### General Interpretation Guidelines |
|
|
|
|
|
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). |
|
|
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). |
|
|
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. |
|
|
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. |
|
|
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. |
|
|
|
|
|
|
|
|
### Visualizations Index |
|
|
|
|
|
| Visualization | Description | |
|
|
|---------------|-------------| |
|
|
| Tokenizer Compression | Compression ratios by vocabulary size | |
|
|
| Tokenizer Fertility | Average token length by vocabulary | |
|
|
| Tokenizer OOV | Unknown token rates | |
|
|
| Tokenizer Total Tokens | Total tokens by vocabulary | |
|
|
| N-gram Perplexity | Perplexity by n-gram size | |
|
|
| N-gram Entropy | Entropy by n-gram size | |
|
|
| N-gram Coverage | Top pattern coverage | |
|
|
| N-gram Unique | Unique n-gram counts | |
|
|
| Markov Entropy | Entropy by context size | |
|
|
| Markov Branching | Branching factor by context | |
|
|
| Markov Contexts | Unique context counts | |
|
|
| Zipf's Law | Frequency-rank distribution with fit | |
|
|
| Vocab Frequency | Word frequency distribution | |
|
|
| Top 20 Words | Most frequent words | |
|
|
| Vocab Coverage | Cumulative coverage curve | |
|
|
| Embedding Isotropy | Vector space uniformity | |
|
|
| Embedding Norms | Vector magnitude distribution | |
|
|
| Embedding Similarity | Word similarity heatmap | |
|
|
| Nearest Neighbors | Similar words for key terms | |
|
|
| t-SNE Words | 2D word embedding visualization | |
|
|
| t-SNE Sentences | 2D sentence embedding visualization | |
|
|
| Position Encoding | Encoding method comparison | |
|
|
| Model Sizes | Storage requirements | |
|
|
| Performance Dashboard | Comprehensive performance overview | |
|
|
|
|
|
--- |
|
|
## About This Project |
|
|
|
|
|
### Data Source |
|
|
|
|
|
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. |
|
|
|
|
|
### Project |
|
|
|
|
|
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. |
|
|
|
|
|
### Maintainer |
|
|
|
|
|
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) |
|
|
|
|
|
### Citation |
|
|
|
|
|
If you use these models in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{wikilangs2025, |
|
|
author = {Kamali, Omar}, |
|
|
title = {Wikilangs: Open NLP Models for Wikipedia Languages}, |
|
|
year = {2025}, |
|
|
doi = {10.5281/zenodo.18073153}, |
|
|
publisher = {Zenodo}, |
|
|
url = {https://huggingface.co/wikilangs} |
|
|
institution = {Omneity Labs} |
|
|
} |
|
|
``` |
|
|
|
|
|
### License |
|
|
|
|
|
MIT License - Free for academic and commercial use. |
|
|
|
|
|
### Links |
|
|
|
|
|
- ๐ Website: [wikilangs.org](https://wikilangs.org) |
|
|
- ๐ค Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) |
|
|
- ๐ Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) |
|
|
- ๐ค Author: [Omar Kamali](https://huggingface.co/omarkamali) |
|
|
- ๐ค Sponsor: [Featherless AI](https://featherless.ai) |
|
|
--- |
|
|
*Generated by Wikilangs Models Pipeline* |
|
|
|
|
|
*Report Date: 2026-01-08 17:02:58* |
|
|
|