Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Research-EAI's picture
Update README.md
927bb96 verified
|
raw
history blame
21.3 kB
metadata
license: apache-2.0

🧮 Taxonomy Math w/ FM

A high-quality mathematics dataset curated from web data using taxonomy-based filtering, containing 34 billion tokens of mathematical content.

🎯 Dataset Overview

This dataset is part of the EssentialWeb project, which introduces a new paradigm for dataset curation using expressive metadata and simple semantic filters. Unlike traditional math datasets that require complex domain-specific pipelines, our approach leverages a 12-category taxonomy to efficiently identify and extract high-quality mathematical content.

🔬 Taxonomy Math w/ FM (34B tokens): Documents labeled as 51 - Mathematics in our taxonomy, with all 116M recalled documents then scored by the FineMath classifier and filtered to the top 34B tokens.

🏆 Performance

Our taxonomy-based approach achieves competitive results with significantly less curation effort:

Dataset GSM8K MATH Curation Complexity
FineMath 3+ 26.4% 11.7% Complex domain pipeline
OpenWebMath 14.6% 9.3% Complex domain pipeline
MegaMath Web 9.8% 7.9% Complex domain pipeline
Taxonomy Top Math 21.3% 11.0% Simple semantic filter
Taxonomy Math w/ FM 22.4% 11.5% + FineMath classifier

Results show our datasets perform within 15% of SOTA while requiring minimal domain-specific tuning.

✨ Key Features

  • 🎯 Direct Distribution Targeting: Leverage existing taxonomy labels to target math content from web-scale data without training custom high-recall classifiers
  • 🚀 Rapid Curation: Skip the expensive classifier training phase and go straight to content selection
  • 💰 Cost Effective: Avoid the need to train high-recall domain-specific classifiers for content discovery
  • 🔍 Two-Stage Approach: Use taxonomy for recall, then apply existing quality classifiers for selection
  • 🌐 Web-Scale: Access to math content identified across 23.6B web documents

🛠️ Curation Method

Our approach simplifies math dataset creation:

  1. Traditional Method: Train high-recall classifiers → Run on billions of documents
  2. Our Method: Query taxonomy metadata for 51 - Mathematics → Apply FineMath classifier to all recalled documents → Select top-scoring content

Dataset Schema Documentation

Overview

This dataset contains web-crawled text data with comprehensive metadata, quality signals, and taxonomic classifications. Each record represents a document extracted from web archives with detailed provenance tracking and quality assessment metrics.

EAI Taxonomy Classification

Comprehensive hierarchical classification system with primary and secondary labels - the most important feature of this dataset:

Free Decimal Correspondence

Dewey Decimal-inspired classification with 3-level hierarchical labels:

Component Description Path
Primary Code Main classification code eai_taxonomy.free_decimal_correspondence.primary.code
Primary Level 1 Top-level category eai_taxonomy.free_decimal_correspondence.primary.labels.level_1
Primary Level 2 Mid-level category eai_taxonomy.free_decimal_correspondence.primary.labels.level_2
Primary Level 3 Specific category eai_taxonomy.free_decimal_correspondence.primary.labels.level_3
Secondary Code Alternative classification code eai_taxonomy.free_decimal_correspondence.secondary.code
Secondary Level 1 Alternative top-level category eai_taxonomy.free_decimal_correspondence.secondary.labels.level_1
Secondary Level 2 Alternative mid-level category eai_taxonomy.free_decimal_correspondence.secondary.labels.level_2
Secondary Level 3 Alternative specific category eai_taxonomy.free_decimal_correspondence.secondary.labels.level_3

Bloom's Taxonomy Integration

Cognitive Process

Learning and thinking skill levels:

Component Description Path
Primary Code Main cognitive process code eai_taxonomy.bloom_cognitive_process.primary.code
Primary Label Main cognitive process label eai_taxonomy.bloom_cognitive_process.primary.label
Secondary Code Alternative cognitive process code eai_taxonomy.bloom_cognitive_process.secondary.code
Secondary Label Alternative cognitive process label eai_taxonomy.bloom_cognitive_process.secondary.label

Possible Values:

Code Label
-1 Abstain
1 Remember
2 Understand
3 Apply
4 Analyze
5 Evaluate
6 Create

Knowledge Domain

Subject matter categorization:

Component Description Path
Primary Code Main knowledge domain code eai_taxonomy.bloom_knowledge_domain.primary.code
Primary Label Main knowledge domain label eai_taxonomy.bloom_knowledge_domain.primary.label
Secondary Code Alternative knowledge domain code eai_taxonomy.bloom_knowledge_domain.secondary.code
Secondary Label Alternative knowledge domain label eai_taxonomy.bloom_knowledge_domain.secondary.label

Possible Values:

Code Label
-1 Abstain
1 Factual
2 Conceptual
3 Procedural
4 Metacognitive

Document Characteristics

Document Type v1

Format and structure classification:

Component Description Path
Primary Code Main document type code eai_taxonomy.document_type_v1.primary.code
Primary Label Main document type label eai_taxonomy.document_type_v1.primary.label
Secondary Code Alternative document type code eai_taxonomy.document_type_v1.secondary.code
Secondary Label Alternative document type label eai_taxonomy.document_type_v1.secondary.label

Possible Values:

Code Label
-1 Abstain
1 News/Editorial
2 Academic/Research
3 Reference/Encyclopedic/Educational
4 Code/Software
5 Social/Forum
6 Promotional/Advertisement
7 Search/Directory/Bibliography
8 Adult/Pornographic
9 Personal/Misc
10 Machine-Generated
11 Legal/Regulatory
12 Government/Political
13 Literary/Creative
14 Reviews/Critiques
15 E-Commerce/Marketplace
16 Images/Videos/Audio
17 Other/Unclassified

Document Type v2

Updated format and structure classification:

Component Description Path
Primary Code Main document type code (v2) eai_taxonomy.document_type_v2.primary.code
Primary Label Main document type label (v2) eai_taxonomy.document_type_v2.primary.label
Secondary Code Alternative document type code (v2) eai_taxonomy.document_type_v2.secondary.code
Secondary Label Alternative document type label (v2) eai_taxonomy.document_type_v2.secondary.label

Possible Values:

Code Label
-1 Abstain
1 About (Org.)
2 About (Personal)
3 Academic Writing
4 Audio Transcript
5 Comment Section
6 Content Listing
7 Creative Writing
8 Documentation
9 FAQ
10 Knowledge Article
11 Legal Notices
12 Listicle
13 News (Org.)
14 News Article
15 Nonfiction Writing
16 Personal Blog
17 Product Page
18 Q&A Forum
19 Spam / Ads
20 Structured Data
21 Customer Support
22 Truncated
23 Tutorial
24 User Review
25 Other/Unclassified

Extraction Artifacts

Technical extraction quality indicators:

Component Description Path
Primary Code Main extraction artifact code eai_taxonomy.extraction_artifacts.primary.code
Primary Label Main extraction artifact label eai_taxonomy.extraction_artifacts.primary.label
Secondary Code Alternative extraction artifact code eai_taxonomy.extraction_artifacts.secondary.code
Secondary Label Alternative extraction artifact label eai_taxonomy.extraction_artifacts.secondary.label

Possible Values:

Code Label
-1 Abstain
0 No Artifacts
1 Leftover HTML
2 Text Extraction Errors
3 Irrelevant Content
4 Indeterminate

Missing Content

Content completeness assessment:

Component Description Path
Primary Code Main missing content code eai_taxonomy.missing_content.primary.code
Primary Label Main missing content label eai_taxonomy.missing_content.primary.label
Secondary Code Alternative missing content code eai_taxonomy.missing_content.secondary.code
Secondary Label Alternative missing content label eai_taxonomy.missing_content.secondary.label

Possible Values:

Code Label
-1 Abstain
0 No missing content
1 Truncated Snippets
2 Click Here References
3 Incoherent Flow
4 Missing Images or Figures
5 Missing Referenced Data
6 Indeterminate

Content Quality Dimensions

Reasoning Depth

Complexity of logical reasoning:

Component Description Path
Primary Code Main reasoning depth code eai_taxonomy.reasoning_depth.primary.code
Primary Label Main reasoning depth label eai_taxonomy.reasoning_depth.primary.label
Secondary Code Alternative reasoning depth code eai_taxonomy.reasoning_depth.secondary.code
Secondary Label Alternative reasoning depth label eai_taxonomy.reasoning_depth.secondary.label

Possible Values:

Code Label
-1 Abstain
1 No Reasoning
2 Basic Reasoning
3 Intermediate Reasoning
4 Advanced Reasoning
5 Exceptional Reasoning
6 Indeterminate

Technical Correctness

Accuracy of technical information:

Component Description Path
Primary Code Main technical correctness code eai_taxonomy.technical_correctness.primary.code
Primary Label Main technical correctness label eai_taxonomy.technical_correctness.primary.label
Secondary Code Alternative technical correctness code eai_taxonomy.technical_correctness.secondary.code
Secondary Label Alternative technical correctness label eai_taxonomy.technical_correctness.secondary.label

Possible Values:

Code Label
-1 Abstain
1 Technically Flawed
2 Partially Correct
3 Mostly Correct
4 Highly Correct
5 Exceptionally Correct
6 Not Applicable/Indeterminate

Education Level

Appropriate educational grade level:

Component Description Path
Primary Code Main education level code eai_taxonomy.education_level.primary.code
Primary Label Main education level label eai_taxonomy.education_level.primary.label
Secondary Code Alternative education level code eai_taxonomy.education_level.secondary.code
Secondary Label Alternative education level label eai_taxonomy.education_level.secondary.label

Possible Values:

Code Label
-1 Abstain
1 General Audience
2 High School Level
3 Undergraduate Level
4 Graduate/Expert Level
5 Indeterminate

Schema Structure

Core Fields

Field Type Description Path
id Int64 Unique identifier for each document id
text String The main textual content of the document text

Metadata Structure

The metadata field contains a nested structure with web archive information:

Field Type Description Path
URL Information
URL String Original URL of the document metadata.url
Source Domain String Domain name of the source metadata.source_domain
Snapshot ID String Identifier for the web archive snapshot metadata.snapshot_id
WARC Metadata WARC (Web ARChive) format metadata
Content Length String Size of the content metadata.warc_metadata.Content-Length
Content Type String MIME type of the content metadata.warc_metadata.Content-Type
Block Digest String Checksum of the WARC block metadata.warc_metadata.WARC-Block-Digest
Concurrent To String Related WARC records metadata.warc_metadata.WARC-Concurrent-To
Date String Timestamp of the crawl metadata.warc_metadata.WARC-Date
IP Address String Source server IP address metadata.warc_metadata.WARC-IP-Address
Payload Type String Identified content type metadata.warc_metadata.WARC-Identified-Payload-Type
Payload Digest String Checksum of the payload metadata.warc_metadata.WARC-Payload-Digest
Record ID String Unique WARC record identifier metadata.warc_metadata.WARC-Record-ID
Target URI String Original target URL metadata.warc_metadata.WARC-Target-URI
Truncated String Truncation status metadata.warc_metadata.WARC-Truncated
Type String WARC record type metadata.warc_metadata.WARC-Type
Warcinfo ID String Associated warcinfo record metadata.warc_metadata.WARC-Warcinfo-ID
Additional Info
WARC Info String Additional WARC information metadata.warc_info

Text Structure Information

Field Type Description Path
Line Start Indices List[Int32] Starting indices of each line line_start_n_end_idx.line_start_idx
Line End Indices List[Int32] Ending indices of each line line_start_n_end_idx.line_end_idx

Quality Signals

The dataset includes two comprehensive quality assessment frameworks:

Red Pajama v2 Quality Metrics

Text quality indicators derived from the Red Pajama v2 filtering pipeline:

Content Structure Metrics

Metric Description Path
Original Length Original document length quality_signals.red_pajama_v2.ccnet_original_length
Original Lines Number of lines in original document quality_signals.red_pajama_v2.ccnet_original_nlines
Sentence Count Total sentence count quality_signals.red_pajama_v2.rps_doc_num_sentences
Word Count Total word count quality_signals.red_pajama_v2.rps_doc_word_count
Mean Word Length Average word length quality_signals.red_pajama_v2.rps_doc_mean_word_length

Language Quality Metrics

Metric Description Path
Stop Word Fraction Proportion of stop words quality_signals.red_pajama_v2.rps_doc_stop_word_fraction
Unique Words Fraction Fraction of unique words quality_signals.red_pajama_v2.rps_doc_frac_unique_words
All Caps Words Fraction of words in all capitals quality_signals.red_pajama_v2.rps_doc_frac_all_caps_words
Non-Alphabetic Words Fraction of non-alphabetic words quality_signals.red_pajama_v2.rps_doc_frac_no_alph_words
Unigram Entropy Entropy measure of word distribution quality_signals.red_pajama_v2.rps_doc_unigram_entropy

Content Pattern Analysis

Metric Description Path
Curly Bracket Density Curly bracket density (code indicator) quality_signals.red_pajama_v2.rps_doc_curly_bracket
Symbol-to-Word Ratio Symbol-to-word ratio quality_signals.red_pajama_v2.rps_doc_symbol_to_word_ratio
Ellipsis Line Endings Lines ending with ellipsis quality_signals.red_pajama_v2.rps_doc_frac_lines_end_with_ellipsis
Lorem Ipsum Detection Lorem ipsum text detection quality_signals.red_pajama_v2.rps_doc_lorem_ipsum
Offensive Content Potentially offensive content detection quality_signals.red_pajama_v2.rps_doc_ldnoobw_words
UT1 Blacklist UT1 blacklist filtering score quality_signals.red_pajama_v2.rps_doc_ut1_blacklist

Duplication Detection

Metric Description Path
5-gram Duplication Character-level duplication for 5-grams quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_5grams
6-gram Duplication Character-level duplication for 6-grams quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_6grams
7-gram Duplication Character-level duplication for 7-grams quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_7grams
8-gram Duplication Character-level duplication for 8-grams quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_8grams
9-gram Duplication Character-level duplication for 9-grams quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_9grams
10-gram Duplication Character-level duplication for 10-grams quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_10grams
Top 2-gram Coverage Most frequent 2-gram coverage quality_signals.red_pajama_v2.rps_doc_frac_chars_top_2gram
Top 3-gram Coverage Most frequent 3-gram coverage quality_signals.red_pajama_v2.rps_doc_frac_chars_top_3gram
Top 4-gram Coverage Most frequent 4-gram coverage quality_signals.red_pajama_v2.rps_doc_frac_chars_top_4gram

Domain Importance Scores

Metric Description Path
Books Importance Similarity to book content quality_signals.red_pajama_v2.rps_doc_books_importance
Books Importance (Length Corrected) Length-corrected books similarity quality_signals.red_pajama_v2.rps_doc_books_importance_length_correction
OpenWebText Importance Similarity to OpenWebText quality_signals.red_pajama_v2.rps_doc_openwebtext_importance
OpenWebText Importance (Length Corrected) Length-corrected OpenWebText similarity quality_signals.red_pajama_v2.rps_doc_openwebtext_importance_length_correction
Wikipedia Importance Similarity to Wikipedia quality_signals.red_pajama_v2.rps_doc_wikipedia_importance
Wikipedia Importance (Length Corrected) Length-corrected Wikipedia similarity quality_signals.red_pajama_v2.rps_doc_wikipedia_importance_length_correction

FastText Classification Scores

Domain and content type classification probabilities:

Metric Description Path
DCLM Score DataComp-LM classifier score quality_signals.fasttext.dclm
English Confidence English language confidence quality_signals.fasttext.english
Educational Content Educational content approximation quality_signals.fasttext.fineweb_edu_approx
General Math General mathematics content quality_signals.fasttext.eai_general_math
Web Math Web-based mathematics content quality_signals.fasttext.eai_open_web_math
Code Content Code content detection quality_signals.fasttext.eai_web_code

Data Provenance

All documents originate from web crawls with full WARC metadata preservation, enabling:

  • Source verification and attribution
  • Temporal analysis of web content
  • Content deduplication across crawls
  • Quality assessment pipeline reconstruction

Usage Examples

Filter by quality score:

df.filter(df["quality_signals.red_pajama_v2.rps_doc_stop_word_fraction"] > 0.3)

Filter by domain:

df.filter(df["metadata.source_domain"].contains("wikipedia"))

Filter by education level:

df.filter(df["eai_taxonomy.education_level.primary.code"] == "2")  # High School Level

Filter by content type:

df.filter(df["quality_signals.fasttext.eai_web_code"] > 0.8)

Filter by document quality:

df.filter(
    (df["quality_signals.red_pajama_v2.rps_doc_word_count"] > 100) &
    (df["quality_signals.red_pajama_v2.rps_doc_stop_word_fraction"] > 0.2) &
    (df["quality_signals.red_pajama_v2.rps_doc_frac_unique_words"] > 0.3)
)

Filter by reasoning depth:

df.filter(df["eai_taxonomy.reasoning_depth.primary.code"].isin(["4", "5"]))  # Advanced or Exceptional

Filter by document type:

df.filter(df["eai_taxonomy.document_type_v2.primary.code"] == "3")  # Academic Writing

Filter high-quality educational content:

df.filter(
    (df["eai_taxonomy.education_level.primary.code"].isin(["2", "3"])) &  # High School or Undergraduate
    (df["eai_taxonomy.technical_correctness.primary.code"].isin(["4", "5"])) &  # Highly or Exceptionally Correct
    (df["eai_taxonomy.extraction_artifacts.primary.code"] == "0") &  # No Artifacts
    (df["quality_signals.fasttext.fineweb_edu_approx"] > 0.7)
)

🎓 Citation

If you use this dataset, please cite our EssentialWeb paper:

@article{essentialweb2025,
  title={Essential-Web: 24T tokens of organized web data},
  author={[Authors]},
  year={2025}
}

Part of the EssentialWeb ecosystem: Making dataset curation accessible, interpretable, and efficient.