|
|
--- |
|
|
license: apache-2.0 |
|
|
--- |
|
|
|
|
|
# 🧮 Taxonomy Math w/ FM |
|
|
|
|
|
A high-quality mathematics dataset curated from web data using taxonomy-based filtering, containing **34 billion tokens** of mathematical content. |
|
|
|
|
|
## 🎯 Dataset Overview |
|
|
|
|
|
This dataset is part of the **EssentialWeb** project, which introduces a new paradigm for dataset curation using expressive metadata and simple semantic filters. Unlike traditional math datasets that require complex domain-specific pipelines, our approach leverages a 12-category taxonomy to efficiently identify and extract high-quality mathematical content. |
|
|
|
|
|
**🔬 Taxonomy Math w/ FM** (34B tokens): Documents labeled as `51 - Mathematics` in our taxonomy, with all 116M recalled documents then scored by the FineMath classifier and filtered to the top 34B tokens. |
|
|
|
|
|
## 🏆 Performance |
|
|
|
|
|
Our taxonomy-based approach achieves competitive results with significantly less curation effort: |
|
|
|
|
|
| Dataset | GSM8K | MATH | Curation Complexity | |
|
|
|---------|-------|------|-------------------| |
|
|
| FineMath 3+ | **26.4%** | **11.7%** | Complex domain pipeline | |
|
|
| OpenWebMath | 14.6% | 9.3% | Complex domain pipeline | |
|
|
| MegaMath Web | 9.8% | 7.9% | Complex domain pipeline | |
|
|
| Taxonomy Top Math | 21.3% | 11.0% | Simple semantic filter | |
|
|
| Taxonomy Math w/ FM | 22.4% | 11.5% | + FineMath classifier | |
|
|
|
|
|
*Results show our datasets perform within 15% of SOTA while requiring minimal domain-specific tuning.* |
|
|
|
|
|
## ✨ Key Features |
|
|
|
|
|
- **🎯 Direct Distribution Targeting**: Leverage existing taxonomy labels to target math content from web-scale data without training custom high-recall classifiers |
|
|
- **🚀 Rapid Curation**: Skip the expensive classifier training phase and go straight to content selection |
|
|
- **💰 Cost Effective**: Avoid the need to train high-recall domain-specific classifiers for content discovery |
|
|
- **🔍 Two-Stage Approach**: Use taxonomy for recall, then apply existing quality classifiers for selection |
|
|
- **🌐 Web-Scale**: Access to math content identified across 23.6B web documents |
|
|
|
|
|
## 🛠️ Curation Method |
|
|
|
|
|
Our approach simplifies math dataset creation: |
|
|
|
|
|
1. **Traditional Method**: Train high-recall classifiers → Run on billions of documents |
|
|
2. **Our Method**: Query taxonomy metadata for `51 - Mathematics` → Apply FineMath classifier to all recalled documents → Select top-scoring content |
|
|
|
|
|
# Dataset Schema Documentation |
|
|
|
|
|
## Overview |
|
|
|
|
|
This dataset contains web-crawled text data with comprehensive metadata, quality signals, and taxonomic classifications. Each record represents a document extracted from web archives with detailed provenance tracking and quality assessment metrics. |
|
|
|
|
|
## EAI Taxonomy Classification |
|
|
|
|
|
Comprehensive hierarchical classification system with primary and secondary labels - the most important feature of this dataset: |
|
|
|
|
|
### Free Decimal Correspondence |
|
|
Dewey Decimal-inspired classification with 3-level hierarchical labels: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main classification code | `eai_taxonomy.free_decimal_correspondence.primary.code` | |
|
|
| Primary Level 1 | Top-level category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_1` | |
|
|
| Primary Level 2 | Mid-level category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_2` | |
|
|
| Primary Level 3 | Specific category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_3` | |
|
|
| Secondary Code | Alternative classification code | `eai_taxonomy.free_decimal_correspondence.secondary.code` | |
|
|
| Secondary Level 1 | Alternative top-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_1` | |
|
|
| Secondary Level 2 | Alternative mid-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_2` | |
|
|
| Secondary Level 3 | Alternative specific category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_3` | |
|
|
|
|
|
### Bloom's Taxonomy Integration |
|
|
|
|
|
#### Cognitive Process |
|
|
Learning and thinking skill levels: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main cognitive process code | `eai_taxonomy.bloom_cognitive_process.primary.code` | |
|
|
| Primary Label | Main cognitive process label | `eai_taxonomy.bloom_cognitive_process.primary.label` | |
|
|
| Secondary Code | Alternative cognitive process code | `eai_taxonomy.bloom_cognitive_process.secondary.code` | |
|
|
| Secondary Label | Alternative cognitive process label | `eai_taxonomy.bloom_cognitive_process.secondary.label` | |
|
|
|
|
|
**Possible Values:** |
|
|
| Code | Label | |
|
|
|------|-------| |
|
|
| `-1` | Abstain | |
|
|
| `1` | Remember | |
|
|
| `2` | Understand | |
|
|
| `3` | Apply | |
|
|
| `4` | Analyze | |
|
|
| `5` | Evaluate | |
|
|
| `6` | Create | |
|
|
|
|
|
#### Knowledge Domain |
|
|
Subject matter categorization: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.primary.code` | |
|
|
| Primary Label | Main knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.primary.label` | |
|
|
| Secondary Code | Alternative knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.secondary.code` | |
|
|
| Secondary Label | Alternative knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.secondary.label` | |
|
|
|
|
|
**Possible Values:** |
|
|
| Code | Label | |
|
|
|------|-------| |
|
|
| `-1` | Abstain | |
|
|
| `1` | Factual | |
|
|
| `2` | Conceptual | |
|
|
| `3` | Procedural | |
|
|
| `4` | Metacognitive | |
|
|
|
|
|
### Document Characteristics |
|
|
|
|
|
#### Document Type v1 |
|
|
Format and structure classification: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main document type code | `eai_taxonomy.document_type_v1.primary.code` | |
|
|
| Primary Label | Main document type label | `eai_taxonomy.document_type_v1.primary.label` | |
|
|
| Secondary Code | Alternative document type code | `eai_taxonomy.document_type_v1.secondary.code` | |
|
|
| Secondary Label | Alternative document type label | `eai_taxonomy.document_type_v1.secondary.label` | |
|
|
|
|
|
**Possible Values:** |
|
|
| Code | Label | |
|
|
|------|-------| |
|
|
| `-1` | Abstain | |
|
|
| `1` | News/Editorial | |
|
|
| `2` | Academic/Research | |
|
|
| `3` | Reference/Encyclopedic/Educational | |
|
|
| `4` | Code/Software | |
|
|
| `5` | Social/Forum | |
|
|
| `6` | Promotional/Advertisement | |
|
|
| `7` | Search/Directory/Bibliography | |
|
|
| `8` | Adult/Pornographic | |
|
|
| `9` | Personal/Misc | |
|
|
| `10` | Machine-Generated | |
|
|
| `11` | Legal/Regulatory | |
|
|
| `12` | Government/Political | |
|
|
| `13` | Literary/Creative | |
|
|
| `14` | Reviews/Critiques | |
|
|
| `15` | E-Commerce/Marketplace | |
|
|
| `16` | Images/Videos/Audio | |
|
|
| `17` | Other/Unclassified | |
|
|
|
|
|
#### Document Type v2 |
|
|
Updated format and structure classification: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main document type code (v2) | `eai_taxonomy.document_type_v2.primary.code` | |
|
|
| Primary Label | Main document type label (v2) | `eai_taxonomy.document_type_v2.primary.label` | |
|
|
| Secondary Code | Alternative document type code (v2) | `eai_taxonomy.document_type_v2.secondary.code` | |
|
|
| Secondary Label | Alternative document type label (v2) | `eai_taxonomy.document_type_v2.secondary.label` | |
|
|
|
|
|
**Possible Values:** |
|
|
| Code | Label | |
|
|
|------|-------| |
|
|
| `-1` | Abstain | |
|
|
| `1` | About (Org.) | |
|
|
| `2` | About (Personal) | |
|
|
| `3` | Academic Writing | |
|
|
| `4` | Audio Transcript | |
|
|
| `5` | Comment Section | |
|
|
| `6` | Content Listing | |
|
|
| `7` | Creative Writing | |
|
|
| `8` | Documentation | |
|
|
| `9` | FAQ | |
|
|
| `10` | Knowledge Article | |
|
|
| `11` | Legal Notices | |
|
|
| `12` | Listicle | |
|
|
| `13` | News (Org.) | |
|
|
| `14` | News Article | |
|
|
| `15` | Nonfiction Writing | |
|
|
| `16` | Personal Blog | |
|
|
| `17` | Product Page | |
|
|
| `18` | Q&A Forum | |
|
|
| `19` | Spam / Ads | |
|
|
| `20` | Structured Data | |
|
|
| `21` | Customer Support | |
|
|
| `22` | Truncated | |
|
|
| `23` | Tutorial | |
|
|
| `24` | User Review | |
|
|
| `25` | Other/Unclassified | |
|
|
|
|
|
#### Extraction Artifacts |
|
|
Technical extraction quality indicators: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main extraction artifact code | `eai_taxonomy.extraction_artifacts.primary.code` | |
|
|
| Primary Label | Main extraction artifact label | `eai_taxonomy.extraction_artifacts.primary.label` | |
|
|
| Secondary Code | Alternative extraction artifact code | `eai_taxonomy.extraction_artifacts.secondary.code` | |
|
|
| Secondary Label | Alternative extraction artifact label | `eai_taxonomy.extraction_artifacts.secondary.label` | |
|
|
|
|
|
**Possible Values:** |
|
|
| Code | Label | |
|
|
|------|-------| |
|
|
| `-1` | Abstain | |
|
|
| `0` | No Artifacts | |
|
|
| `1` | Leftover HTML | |
|
|
| `2` | Text Extraction Errors | |
|
|
| `3` | Irrelevant Content | |
|
|
| `4` | Indeterminate | |
|
|
|
|
|
#### Missing Content |
|
|
Content completeness assessment: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main missing content code | `eai_taxonomy.missing_content.primary.code` | |
|
|
| Primary Label | Main missing content label | `eai_taxonomy.missing_content.primary.label` | |
|
|
| Secondary Code | Alternative missing content code | `eai_taxonomy.missing_content.secondary.code` | |
|
|
| Secondary Label | Alternative missing content label | `eai_taxonomy.missing_content.secondary.label` | |
|
|
|
|
|
**Possible Values:** |
|
|
| Code | Label | |
|
|
|------|-------| |
|
|
| `-1` | Abstain | |
|
|
| `0` | No missing content | |
|
|
| `1` | Truncated Snippets | |
|
|
| `2` | Click Here References | |
|
|
| `3` | Incoherent Flow | |
|
|
| `4` | Missing Images or Figures | |
|
|
| `5` | Missing Referenced Data | |
|
|
| `6` | Indeterminate | |
|
|
|
|
|
### Content Quality Dimensions |
|
|
|
|
|
#### Reasoning Depth |
|
|
Complexity of logical reasoning: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main reasoning depth code | `eai_taxonomy.reasoning_depth.primary.code` | |
|
|
| Primary Label | Main reasoning depth label | `eai_taxonomy.reasoning_depth.primary.label` | |
|
|
| Secondary Code | Alternative reasoning depth code | `eai_taxonomy.reasoning_depth.secondary.code` | |
|
|
| Secondary Label | Alternative reasoning depth label | `eai_taxonomy.reasoning_depth.secondary.label` | |
|
|
|
|
|
**Possible Values:** |
|
|
| Code | Label | |
|
|
|------|-------| |
|
|
| `-1` | Abstain | |
|
|
| `1` | No Reasoning | |
|
|
| `2` | Basic Reasoning | |
|
|
| `3` | Intermediate Reasoning | |
|
|
| `4` | Advanced Reasoning | |
|
|
| `5` | Exceptional Reasoning | |
|
|
| `6` | Indeterminate | |
|
|
|
|
|
#### Technical Correctness |
|
|
Accuracy of technical information: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main technical correctness code | `eai_taxonomy.technical_correctness.primary.code` | |
|
|
| Primary Label | Main technical correctness label | `eai_taxonomy.technical_correctness.primary.label` | |
|
|
| Secondary Code | Alternative technical correctness code | `eai_taxonomy.technical_correctness.secondary.code` | |
|
|
| Secondary Label | Alternative technical correctness label | `eai_taxonomy.technical_correctness.secondary.label` | |
|
|
|
|
|
**Possible Values:** |
|
|
| Code | Label | |
|
|
|------|-------| |
|
|
| `-1` | Abstain | |
|
|
| `1` | Technically Flawed | |
|
|
| `2` | Partially Correct | |
|
|
| `3` | Mostly Correct | |
|
|
| `4` | Highly Correct | |
|
|
| `5` | Exceptionally Correct | |
|
|
| `6` | Not Applicable/Indeterminate | |
|
|
|
|
|
#### Education Level |
|
|
Appropriate educational grade level: |
|
|
|
|
|
| Component | Description | Path | |
|
|
|-----------|-------------|------| |
|
|
| Primary Code | Main education level code | `eai_taxonomy.education_level.primary.code` | |
|
|
| Primary Label | Main education level label | `eai_taxonomy.education_level.primary.label` | |
|
|
| Secondary Code | Alternative education level code | `eai_taxonomy.education_level.secondary.code` | |
|
|
| Secondary Label | Alternative education level label | `eai_taxonomy.education_level.secondary.label` | |
|
|
|
|
|
**Possible Values:** |
|
|
| Code | Label | |
|
|
|------|-------| |
|
|
| `-1` | Abstain | |
|
|
| `1` | General Audience | |
|
|
| `2` | High School Level | |
|
|
| `3` | Undergraduate Level | |
|
|
| `4` | Graduate/Expert Level | |
|
|
| `5` | Indeterminate | |
|
|
|
|
|
## Schema Structure |
|
|
|
|
|
### Core Fields |
|
|
|
|
|
| Field | Type | Description | Path | |
|
|
|-------|------|-------------|------| |
|
|
| `id` | `Int64` | Unique identifier for each document | `id` | |
|
|
| `text` | `String` | The main textual content of the document | `text` | |
|
|
|
|
|
### Metadata Structure |
|
|
|
|
|
The `metadata` field contains a nested structure with web archive information: |
|
|
|
|
|
| Field | Type | Description | Path | |
|
|
|-------|------|-------------|------| |
|
|
| **URL Information** | | | | |
|
|
| URL | `String` | Original URL of the document | `metadata.url` | |
|
|
| Source Domain | `String` | Domain name of the source | `metadata.source_domain` | |
|
|
| Snapshot ID | `String` | Identifier for the web archive snapshot | `metadata.snapshot_id` | |
|
|
| **WARC Metadata** | | WARC (Web ARChive) format metadata | | |
|
|
| Content Length | `String` | Size of the content | `metadata.warc_metadata.Content-Length` | |
|
|
| Content Type | `String` | MIME type of the content | `metadata.warc_metadata.Content-Type` | |
|
|
| Block Digest | `String` | Checksum of the WARC block | `metadata.warc_metadata.WARC-Block-Digest` | |
|
|
| Concurrent To | `String` | Related WARC records | `metadata.warc_metadata.WARC-Concurrent-To` | |
|
|
| Date | `String` | Timestamp of the crawl | `metadata.warc_metadata.WARC-Date` | |
|
|
| IP Address | `String` | Source server IP address | `metadata.warc_metadata.WARC-IP-Address` | |
|
|
| Payload Type | `String` | Identified content type | `metadata.warc_metadata.WARC-Identified-Payload-Type` | |
|
|
| Payload Digest | `String` | Checksum of the payload | `metadata.warc_metadata.WARC-Payload-Digest` | |
|
|
| Record ID | `String` | Unique WARC record identifier | `metadata.warc_metadata.WARC-Record-ID` | |
|
|
| Target URI | `String` | Original target URL | `metadata.warc_metadata.WARC-Target-URI` | |
|
|
| Truncated | `String` | Truncation status | `metadata.warc_metadata.WARC-Truncated` | |
|
|
| Type | `String` | WARC record type | `metadata.warc_metadata.WARC-Type` | |
|
|
| Warcinfo ID | `String` | Associated warcinfo record | `metadata.warc_metadata.WARC-Warcinfo-ID` | |
|
|
| **Additional Info** | | | | |
|
|
| WARC Info | `String` | Additional WARC information | `metadata.warc_info` | |
|
|
|
|
|
### Text Structure Information |
|
|
|
|
|
| Field | Type | Description | Path | |
|
|
|-------|------|-------------|------| |
|
|
| Line Start Indices | `List[Int32]` | Starting indices of each line | `line_start_n_end_idx.line_start_idx` | |
|
|
| Line End Indices | `List[Int32]` | Ending indices of each line | `line_start_n_end_idx.line_end_idx` | |
|
|
|
|
|
## Quality Signals |
|
|
|
|
|
The dataset includes two comprehensive quality assessment frameworks: |
|
|
|
|
|
### Red Pajama v2 Quality Metrics |
|
|
|
|
|
Text quality indicators derived from the Red Pajama v2 filtering pipeline: |
|
|
|
|
|
#### Content Structure Metrics |
|
|
| Metric | Description | Path | |
|
|
|--------|-------------|------| |
|
|
| Original Length | Original document length | `quality_signals.red_pajama_v2.ccnet_original_length` | |
|
|
| Original Lines | Number of lines in original document | `quality_signals.red_pajama_v2.ccnet_original_nlines` | |
|
|
| Sentence Count | Total sentence count | `quality_signals.red_pajama_v2.rps_doc_num_sentences` | |
|
|
| Word Count | Total word count | `quality_signals.red_pajama_v2.rps_doc_word_count` | |
|
|
| Mean Word Length | Average word length | `quality_signals.red_pajama_v2.rps_doc_mean_word_length` | |
|
|
|
|
|
#### Language Quality Metrics |
|
|
| Metric | Description | Path | |
|
|
|--------|-------------|------| |
|
|
| Stop Word Fraction | Proportion of stop words | `quality_signals.red_pajama_v2.rps_doc_stop_word_fraction` | |
|
|
| Unique Words Fraction | Fraction of unique words | `quality_signals.red_pajama_v2.rps_doc_frac_unique_words` | |
|
|
| All Caps Words | Fraction of words in all capitals | `quality_signals.red_pajama_v2.rps_doc_frac_all_caps_words` | |
|
|
| Non-Alphabetic Words | Fraction of non-alphabetic words | `quality_signals.red_pajama_v2.rps_doc_frac_no_alph_words` | |
|
|
| Unigram Entropy | Entropy measure of word distribution | `quality_signals.red_pajama_v2.rps_doc_unigram_entropy` | |
|
|
|
|
|
#### Content Pattern Analysis |
|
|
| Metric | Description | Path | |
|
|
|--------|-------------|------| |
|
|
| Curly Bracket Density | Curly bracket density (code indicator) | `quality_signals.red_pajama_v2.rps_doc_curly_bracket` | |
|
|
| Symbol-to-Word Ratio | Symbol-to-word ratio | `quality_signals.red_pajama_v2.rps_doc_symbol_to_word_ratio` | |
|
|
| Ellipsis Line Endings | Lines ending with ellipsis | `quality_signals.red_pajama_v2.rps_doc_frac_lines_end_with_ellipsis` | |
|
|
| Lorem Ipsum Detection | Lorem ipsum text detection | `quality_signals.red_pajama_v2.rps_doc_lorem_ipsum` | |
|
|
| Offensive Content | Potentially offensive content detection | `quality_signals.red_pajama_v2.rps_doc_ldnoobw_words` | |
|
|
| UT1 Blacklist | UT1 blacklist filtering score | `quality_signals.red_pajama_v2.rps_doc_ut1_blacklist` | |
|
|
|
|
|
#### Duplication Detection |
|
|
| Metric | Description | Path | |
|
|
|--------|-------------|------| |
|
|
| 5-gram Duplication | Character-level duplication for 5-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_5grams` | |
|
|
| 6-gram Duplication | Character-level duplication for 6-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_6grams` | |
|
|
| 7-gram Duplication | Character-level duplication for 7-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_7grams` | |
|
|
| 8-gram Duplication | Character-level duplication for 8-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_8grams` | |
|
|
| 9-gram Duplication | Character-level duplication for 9-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_9grams` | |
|
|
| 10-gram Duplication | Character-level duplication for 10-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_10grams` | |
|
|
| Top 2-gram Coverage | Most frequent 2-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_2gram` | |
|
|
| Top 3-gram Coverage | Most frequent 3-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_3gram` | |
|
|
| Top 4-gram Coverage | Most frequent 4-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_4gram` | |
|
|
|
|
|
#### Domain Importance Scores |
|
|
| Metric | Description | Path | |
|
|
|--------|-------------|------| |
|
|
| Books Importance | Similarity to book content | `quality_signals.red_pajama_v2.rps_doc_books_importance` | |
|
|
| Books Importance (Length Corrected) | Length-corrected books similarity | `quality_signals.red_pajama_v2.rps_doc_books_importance_length_correction` | |
|
|
| OpenWebText Importance | Similarity to OpenWebText | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance` | |
|
|
| OpenWebText Importance (Length Corrected) | Length-corrected OpenWebText similarity | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance_length_correction` | |
|
|
| Wikipedia Importance | Similarity to Wikipedia | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance` | |
|
|
| Wikipedia Importance (Length Corrected) | Length-corrected Wikipedia similarity | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance_length_correction` | |
|
|
|
|
|
### FastText Classification Scores |
|
|
|
|
|
Domain and content type classification probabilities: |
|
|
|
|
|
| Metric | Description | Path | |
|
|
|--------|-------------|------| |
|
|
| DCLM Score | DataComp-LM classifier score | `quality_signals.fasttext.dclm` | |
|
|
| English Confidence | English language confidence | `quality_signals.fasttext.english` | |
|
|
| Educational Content | Educational content approximation | `quality_signals.fasttext.fineweb_edu_approx` | |
|
|
| General Math | General mathematics content | `quality_signals.fasttext.eai_general_math` | |
|
|
| Web Math | Web-based mathematics content | `quality_signals.fasttext.eai_open_web_math` | |
|
|
| Code Content | Code content detection | `quality_signals.fasttext.eai_web_code` | |
|
|
|
|
|
## Data Provenance |
|
|
|
|
|
All documents originate from web crawls with full WARC metadata preservation, enabling: |
|
|
- Source verification and attribution |
|
|
- Temporal analysis of web content |
|
|
- Content deduplication across crawls |
|
|
- Quality assessment pipeline reconstruction |
|
|
|
|
|
## Usage Examples |
|
|
|
|
|
**Filter by quality score:** |
|
|
```python |
|
|
df.filter(df["quality_signals.red_pajama_v2.rps_doc_stop_word_fraction"] > 0.3) |
|
|
``` |
|
|
|
|
|
**Filter by domain:** |
|
|
```python |
|
|
df.filter(df["metadata.source_domain"].contains("wikipedia")) |
|
|
``` |
|
|
|
|
|
**Filter by education level:** |
|
|
```python |
|
|
df.filter(df["eai_taxonomy.education_level.primary.code"] == "2") # High School Level |
|
|
``` |
|
|
|
|
|
**Filter by content type:** |
|
|
```python |
|
|
df.filter(df["quality_signals.fasttext.eai_web_code"] > 0.8) |
|
|
``` |
|
|
|
|
|
**Filter by document quality:** |
|
|
```python |
|
|
df.filter( |
|
|
(df["quality_signals.red_pajama_v2.rps_doc_word_count"] > 100) & |
|
|
(df["quality_signals.red_pajama_v2.rps_doc_stop_word_fraction"] > 0.2) & |
|
|
(df["quality_signals.red_pajama_v2.rps_doc_frac_unique_words"] > 0.3) |
|
|
) |
|
|
``` |
|
|
|
|
|
**Filter by reasoning depth:** |
|
|
```python |
|
|
df.filter(df["eai_taxonomy.reasoning_depth.primary.code"].isin(["4", "5"])) # Advanced or Exceptional |
|
|
``` |
|
|
|
|
|
**Filter by document type:** |
|
|
```python |
|
|
df.filter(df["eai_taxonomy.document_type_v2.primary.code"] == "3") # Academic Writing |
|
|
``` |
|
|
|
|
|
**Filter high-quality educational content:** |
|
|
```python |
|
|
df.filter( |
|
|
(df["eai_taxonomy.education_level.primary.code"].isin(["2", "3"])) & # High School or Undergraduate |
|
|
(df["eai_taxonomy.technical_correctness.primary.code"].isin(["4", "5"])) & # Highly or Exceptionally Correct |
|
|
(df["eai_taxonomy.extraction_artifacts.primary.code"] == "0") & # No Artifacts |
|
|
(df["quality_signals.fasttext.fineweb_edu_approx"] > 0.7) |
|
|
) |
|
|
``` |
|
|
|
|
|
## 🎓 Citation |
|
|
|
|
|
If you use this dataset, please cite our EssentialWeb paper: |
|
|
|
|
|
```bibtex |
|
|
@article{essentialweb2025, |
|
|
title={Essential-Web: 24T tokens of organized web data}, |
|
|
author={[Authors]}, |
|
|
year={2025} |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
*Part of the EssentialWeb ecosystem: Making dataset curation accessible, interpretable, and efficient.* |