Datasets:
license: apache-2.0
language:
- ca
- es
- en
task_categories:
- text-generation
tags:
- query-parsing
- structured-output
- json-generation
- multilingual
- catalan
- spanish
- R&D
- semantic-search
- AINA
- semantic-parsing
size_categories:
- n<1K
IMPULS Query Parsing Dataset
A multilingual dataset for training and evaluating query parsing models that convert natural language queries into structured JSON for R&D project semantic search.
Dataset Description
This dataset was created as part of the IMPULS project (AINA Challenge 2024), a collaboration between SIRIS Academic and Generalitat de Catalunya to build a multilingual semantic search system for R&D ecosystems.
The dataset contains natural language queries in Catalan, Spanish, and English paired with their structured JSON representations, designed for training models to:
- Extract semantic search terms from natural language
- Identify structured filters (funding programme, year, location, organization type)
- Detect query language and intent
Supported Tasks
- Query Parsing / Semantic Parsing: Convert natural language to structured JSON
- Information Extraction: Extract entities and filters from queries
- Multilingual NLU: Understanding queries across CA/ES/EN
Dataset Structure
Data Splits
| Split | Examples | Description |
|---|---|---|
train |
682 | Synthetic, template-generated queries |
test |
100 | Real queries from domain experts |
Schema
Each example contains a structured JSON with the following fields:
{
"doc_type": "projects",
"filters": {
"programme": "Horizon 2020 | FEDER | SIFECAT | null",
"funding_level": "string | null",
"year": ">=2020 | 2015-2020 | null",
"location": "Catalunya | Spain | null",
"location_level": "region | province | country | null"
},
"organisations": [
{
"type": "university | research_center | hospital | company | null",
"name": "UPC | CSIC | null",
"location": "Barcelona | null",
"location_level": "province | region | null"
}
],
"semantic_query": "intel·ligència artificial salut",
"query_rewrite": "Human-readable interpretation of the query",
"meta": {
"id": "TRAIN_001",
"source": "synthetic | expert",
"lang": "CA | ES | EN",
"original_query": "The original natural language query",
"intent": "Discover | Quantify",
"style": "Concise | Verbose | Technical",
"components": ["Content", "Programme", "Year", "Location"],
"resolvability": "Direct | Adapted | Partial",
"notes": "Optional notes about interpretation"
}
}
Field Descriptions
| Field | Description |
|---|---|
doc_type |
Document type to search (always "projects") |
filters.programme |
Funding programme (H2020, Horizon Europe, FEDER, SIFECAT, etc.) |
filters.year |
Year filter (single year, range, or comparison like ">=2020") |
filters.location |
Geographic filter |
filters.location_level |
Geographic granularity (country, region, province) |
organisations |
List of organization filters with type, name, and location |
semantic_query |
Core thematic content for vector search |
query_rewrite |
Human-readable interpretation |
meta.original_query |
The original natural language query |
meta.lang |
Query language (CA/ES/EN) |
meta.intent |
Query intent (Discover/Quantify) |
meta.resolvability |
How well the query maps to the schema |
Dataset Statistics
Language Distribution
| Language | Training | Test |
|---|---|---|
| Catalan (CA) | ~33% | ~33% |
| Spanish (ES) | ~33% | ~21% |
| English (EN) | ~33% | ~46% |
Intent Distribution
| Intent | Count | Percentage |
|---|---|---|
| Discover | 600 | 88.0% |
| Quantify | 82 | 12.0% |
Resolvability Distribution
| Type | Count | Percentage | Description |
|---|---|---|---|
| Direct | 529 | 77.6% | Fully mappable to schema |
| Adapted | 15 | 2.2% | Requires interpretation |
| Partial | 138 | 20.2% | Cannot fully express (ranking, aggregation) |
Component Distribution
| Component | Frequency |
|---|---|
| Thematic content | 92.8% |
| Organization type | 39.9% |
| Organization location | 17.7% |
| Programme (funding) | 17.6% |
| Time expressions | 10.7% |
| Project location | 10.4% |
| Year (specific) | 7.8% |
| Organization name | 7.3% |
Examples
Example 1: Catalan Query (Discover)
Original query: "Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat"
{
"doc_type": "projects",
"filters": {
"programme": null,
"funding_level": null,
"year": null,
"location": null,
"location_level": null
},
"organisations": [
{
"type": "university",
"name": "UPC",
"location": null,
"location_level": null
}
],
"semantic_query": "ciberseguretat",
"query_rewrite": "Llista de projectes de la UPC sobre ciberseguretat",
"meta": {
"id": "TRAIN_488",
"source": "synthetic",
"lang": "CA",
"original_query": "Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat",
"intent": "Discover",
"style": "Concise",
"components": ["Scope", "Organisation Name", "Content", "Role Qualifier"],
"resolvability": "Partial",
"notes": "No es pot filtrar pel rol de 'coordinadora'"
}
}
Example 2: Spanish Query with Filters
Original query: "proyectos de inteligencia artificial financiados por H2020 desde 2019"
{
"doc_type": "projects",
"filters": {
"programme": "Horizon 2020",
"funding_level": null,
"year": ">=2019",
"location": null,
"location_level": null
},
"organisations": [],
"semantic_query": "inteligencia artificial",
"query_rewrite": "Proyectos sobre inteligencia artificial del programa H2020 desde 2019",
"meta": {
"lang": "ES",
"intent": "Discover",
"resolvability": "Direct"
}
}
Example 3: English Quantify Query
Original query: "how many universities participated in quantum computing projects?"
{
"doc_type": "projects",
"filters": {
"programme": null,
"funding_level": null,
"year": null,
"location": null,
"location_level": null
},
"organisations": [
{
"type": "university",
"name": null,
"location": null,
"location_level": null
}
],
"semantic_query": "quantum computing",
"query_rewrite": "Count of universities participating in quantum computing projects",
"meta": {
"lang": "EN",
"intent": "Quantify",
"resolvability": "Partial",
"notes": "Aggregation (count) cannot be expressed in schema"
}
}
Usage
Loading the Dataset
from datasets import load_dataset
dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")
# Access splits
train_data = dataset["train"]
test_data = dataset["test"]
# Example
print(train_data[0]["meta"]["original_query"])
print(train_data[0]["semantic_query"])
For Training with Transformers
from datasets import load_dataset
dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")
def format_for_training(example):
# Format as instruction-following
return {
"instruction": "Convert this query to structured JSON for R&D project search.",
"input": example["meta"]["original_query"],
"output": json.dumps(example, ensure_ascii=False, indent=2)
}
formatted = dataset.map(format_for_training)
Data Collection
Training Data
The training set was synthetically generated using:
- Controlled vocabularies (funding programmes, organization names, locations)
- Thematic keywords extracted from real R&D project titles and abstracts
- Domain-specific templates mirroring realistic user queries
- Balanced language distribution across Catalan, Spanish, and English
Test Data
The test set contains real queries from domain experts:
- Collected from researchers and R&I policy analysts
- Elicited through structured questionnaires asking for typical information needs
- Manually annotated with gold-standard JSON structures
Intended Use
This dataset is designed for:
- Training query parsing models for R&D project search systems
- Evaluating multilingual NLU capabilities for Catalan, Spanish, and English
- Benchmarking structured output generation from natural language
- Research on semantic parsing for specialized domains
Limitations
- Domain-specific: Focused on R&D project search; may not generalize to other domains
- Schema constraints: Some query types (ranking, complex aggregations) cannot be fully represented
- Synthetic training data: Training examples are template-generated, which may limit diversity
- Language balance: Test set has more English queries than training distribution
Citation
@misc{impuls-query-parsing-2024,
author = {SIRIS Academic},
title = {IMPULS Query Parsing Dataset: Multilingual Queries for R&D Semantic Search},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/SIRIS-Lab/impuls-query-parsing}}
}
Acknowledgments
- Barcelona Supercomputing Center (BSC) - AINA project infrastructure
- Generalitat de Catalunya - Funding and RIS3-MCAT platform
- AINA Project - AINA Challenge 2024 framework
License
Apache 2.0
Links
- Query Parser Model: SIRIS-Lab/impuls-salamandra-7b-query-parser
- Project Repository: github.com/sirisacademic/aina-impulse
- SIRIS Academic: sirisacademic.com