I2E / README.md
UESTC-BICS's picture
Update README.md
edfd5e0 verified
metadata
dataset_info:
  - config_name: I2E-CIFAR10
    features:
      - name: file_path
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': '0'
              '1': '1'
              '2': '2'
              '3': '3'
              '4': '4'
              '5': '5'
              '6': '6'
              '7': '7'
              '8': '8'
              '9': '9'
      - name: data
        dtype: binary
    splits:
      - name: train
        num_bytes: 1646538890
        num_examples: 50000
      - name: validation
        num_bytes: 329298890
        num_examples: 10000
    download_size: 464478602
    dataset_size: 1975837780
  - config_name: I2E-CIFAR100
    features:
      - name: file_path
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': '0'
              '1': '1'
              '2': '2'
              '3': '3'
              '4': '4'
              '5': '5'
              '6': '6'
              '7': '7'
              '8': '8'
              '9': '9'
              '10': '10'
              '11': '11'
              '12': '12'
              '13': '13'
              '14': '14'
              '15': '15'
              '16': '16'
              '17': '17'
              '18': '18'
              '19': '19'
              '20': '20'
              '21': '21'
              '22': '22'
              '23': '23'
              '24': '24'
              '25': '25'
              '26': '26'
              '27': '27'
              '28': '28'
              '29': '29'
              '30': '30'
              '31': '31'
              '32': '32'
              '33': '33'
              '34': '34'
              '35': '35'
              '36': '36'
              '37': '37'
              '38': '38'
              '39': '39'
              '40': '40'
              '41': '41'
              '42': '42'
              '43': '43'
              '44': '44'
              '45': '45'
              '46': '46'
              '47': '47'
              '48': '48'
              '49': '49'
              '50': '50'
              '51': '51'
              '52': '52'
              '53': '53'
              '54': '54'
              '55': '55'
              '56': '56'
              '57': '57'
              '58': '58'
              '59': '59'
              '60': '60'
              '61': '61'
              '62': '62'
              '63': '63'
              '64': '64'
              '65': '65'
              '66': '66'
              '67': '67'
              '68': '68'
              '69': '69'
              '70': '70'
              '71': '71'
              '72': '72'
              '73': '73'
              '74': '74'
              '75': '75'
              '76': '76'
              '77': '77'
              '78': '78'
              '79': '79'
              '80': '80'
              '81': '81'
              '82': '82'
              '83': '83'
              '84': '84'
              '85': '85'
              '86': '86'
              '87': '87'
              '88': '88'
              '89': '89'
              '90': '90'
              '91': '91'
              '92': '92'
              '93': '93'
              '94': '94'
              '95': '95'
              '96': '96'
              '97': '97'
              '98': '98'
              '99': '99'
      - name: data
        dtype: binary
    splits:
      - name: train
        num_bytes: 1646583890
        num_examples: 50000
      - name: validation
        num_bytes: 329307890
        num_examples: 10000
    download_size: 462298257
    dataset_size: 1975891780
  - config_name: I2E-Caltech101
    features:
      - name: file_path
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': Faces
              '1': Faces_easy
              '2': Leopards
              '3': Motorbikes
              '4': accordion
              '5': airplanes
              '6': anchor
              '7': ant
              '8': barrel
              '9': bass
              '10': beaver
              '11': binocular
              '12': bonsai
              '13': brain
              '14': brontosaurus
              '15': buddha
              '16': butterfly
              '17': camera
              '18': cannon
              '19': car_side
              '20': ceiling_fan
              '21': cellphone
              '22': chair
              '23': chandelier
              '24': cougar_body
              '25': cougar_face
              '26': crab
              '27': crayfish
              '28': crocodile
              '29': crocodile_head
              '30': cup
              '31': dalmatian
              '32': dollar_bill
              '33': dolphin
              '34': dragonfly
              '35': electric_guitar
              '36': elephant
              '37': emu
              '38': euphonium
              '39': ewer
              '40': ferry
              '41': flamingo
              '42': flamingo_head
              '43': garfield
              '44': gerenuk
              '45': gramophone
              '46': grand_piano
              '47': hawksbill
              '48': headphone
              '49': hedgehog
              '50': helicopter
              '51': ibis
              '52': inline_skate
              '53': joshua_tree
              '54': kangaroo
              '55': ketch
              '56': lamp
              '57': laptop
              '58': llama
              '59': lobster
              '60': lotus
              '61': mandolin
              '62': mayfly
              '63': menorah
              '64': metronome
              '65': minaret
              '66': nautilus
              '67': octopus
              '68': okapi
              '69': pagoda
              '70': panda
              '71': pigeon
              '72': pizza
              '73': platypus
              '74': pyramid
              '75': revolver
              '76': rhino
              '77': rooster
              '78': saxophone
              '79': schooner
              '80': scissors
              '81': scorpion
              '82': sea_horse
              '83': snoopy
              '84': soccer_ball
              '85': stapler
              '86': starfish
              '87': stegosaurus
              '88': stop_sign
              '89': strawberry
              '90': sunflower
              '91': tick
              '92': trilobite
              '93': umbrella
              '94': watch
              '95': water_lilly
              '96': wheelchair
              '97': wild_cat
              '98': windsor_chair
              '99': wrench
              '100': yin_yang
      - name: data
        dtype: binary
    splits:
      - name: train
        num_bytes: 872272607
        num_examples: 8677
    download_size: 344357976
    dataset_size: 872272607
  - config_name: I2E-Caltech256
    features:
      - name: file_path
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': 001.ak47
              '1': 002.american-flag
              '2': 003.backpack
              '3': 004.baseball-bat
              '4': 005.baseball-glove
              '5': 006.basketball-hoop
              '6': 007.bat
              '7': 008.bathtub
              '8': 009.bear
              '9': 010.beer-mug
              '10': 011.billiards
              '11': 012.binoculars
              '12': 013.birdbath
              '13': 014.blimp
              '14': 015.bonsai-101
              '15': 016.boom-box
              '16': 017.bowling-ball
              '17': 018.bowling-pin
              '18': 019.boxing-glove
              '19': 020.brain-101
              '20': 021.breadmaker
              '21': 022.buddha-101
              '22': 023.bulldozer
              '23': 024.butterfly
              '24': 025.cactus
              '25': 026.cake
              '26': 027.calculator
              '27': 028.camel
              '28': 029.cannon
              '29': 030.canoe
              '30': 031.car-tire
              '31': 032.cartman
              '32': 033.cd
              '33': 034.centipede
              '34': 035.cereal-box
              '35': 036.chandelier-101
              '36': 037.chess-board
              '37': 038.chimp
              '38': 039.chopsticks
              '39': 040.cockroach
              '40': 041.coffee-mug
              '41': 042.coffin
              '42': 043.coin
              '43': 044.comet
              '44': 045.computer-keyboard
              '45': 046.computer-monitor
              '46': 047.computer-mouse
              '47': 048.conch
              '48': 049.cormorant
              '49': 050.covered-wagon
              '50': 051.cowboy-hat
              '51': 052.crab-101
              '52': 053.desk-globe
              '53': 054.diamond-ring
              '54': 055.dice
              '55': 056.dog
              '56': 057.dolphin-101
              '57': 058.doorknob
              '58': 059.drinking-straw
              '59': 060.duck
              '60': 061.dumb-bell
              '61': 062.eiffel-tower
              '62': 063.electric-guitar-101
              '63': 064.elephant-101
              '64': 065.elk
              '65': 066.ewer-101
              '66': 067.eyeglasses
              '67': 068.fern
              '68': 069.fighter-jet
              '69': 070.fire-extinguisher
              '70': 071.fire-hydrant
              '71': 072.fire-truck
              '72': 073.fireworks
              '73': 074.flashlight
              '74': 075.floppy-disk
              '75': 076.football-helmet
              '76': 077.french-horn
              '77': 078.fried-egg
              '78': 079.frisbee
              '79': 080.frog
              '80': 081.frying-pan
              '81': 082.galaxy
              '82': 083.gas-pump
              '83': 084.giraffe
              '84': 085.goat
              '85': 086.golden-gate-bridge
              '86': 087.goldfish
              '87': 088.golf-ball
              '88': 089.goose
              '89': 090.gorilla
              '90': 091.grand-piano-101
              '91': 092.grapes
              '92': 093.grasshopper
              '93': 094.guitar-pick
              '94': 095.hamburger
              '95': 096.hammock
              '96': 097.harmonica
              '97': 098.harp
              '98': 099.harpsichord
              '99': 100.hawksbill-101
              '100': 101.head-phones
              '101': 102.helicopter-101
              '102': 103.hibiscus
              '103': 104.homer-simpson
              '104': 105.horse
              '105': 106.horseshoe-crab
              '106': 107.hot-air-balloon
              '107': 108.hot-dog
              '108': 109.hot-tub
              '109': 110.hourglass
              '110': 111.house-fly
              '111': 112.human-skeleton
              '112': 113.hummingbird
              '113': 114.ibis-101
              '114': 115.ice-cream-cone
              '115': 116.iguana
              '116': 117.ipod
              '117': 118.iris
              '118': 119.jesus-christ
              '119': 120.joy-stick
              '120': 121.kangaroo-101
              '121': 122.kayak
              '122': 123.ketch-101
              '123': 124.killer-whale
              '124': 125.knife
              '125': 126.ladder
              '126': 127.laptop-101
              '127': 128.lathe
              '128': 129.leopards-101
              '129': 130.license-plate
              '130': 131.lightbulb
              '131': 132.light-house
              '132': 133.lightning
              '133': 134.llama-101
              '134': 135.mailbox
              '135': 136.mandolin
              '136': 137.mars
              '137': 138.mattress
              '138': 139.megaphone
              '139': 140.menorah-101
              '140': 141.microscope
              '141': 142.microwave
              '142': 143.minaret
              '143': 144.minotaur
              '144': 145.motorbikes-101
              '145': 146.mountain-bike
              '146': 147.mushroom
              '147': 148.mussels
              '148': 149.necktie
              '149': 150.octopus
              '150': 151.ostrich
              '151': 152.owl
              '152': 153.palm-pilot
              '153': 154.palm-tree
              '154': 155.paperclip
              '155': 156.paper-shredder
              '156': 157.pci-card
              '157': 158.penguin
              '158': 159.people
              '159': 160.pez-dispenser
              '160': 161.photocopier
              '161': 162.picnic-table
              '162': 163.playing-card
              '163': 164.porcupine
              '164': 165.pram
              '165': 166.praying-mantis
              '166': 167.pyramid
              '167': 168.raccoon
              '168': 169.radio-telescope
              '169': 170.rainbow
              '170': 171.refrigerator
              '171': 172.revolver-101
              '172': 173.rifle
              '173': 174.rotary-phone
              '174': 175.roulette-wheel
              '175': 176.saddle
              '176': 177.saturn
              '177': 178.school-bus
              '178': 179.scorpion-101
              '179': 180.screwdriver
              '180': 181.segway
              '181': 182.self-propelled-lawn-mower
              '182': 183.sextant
              '183': 184.sheet-music
              '184': 185.skateboard
              '185': 186.skunk
              '186': 187.skyscraper
              '187': 188.smokestack
              '188': 189.snail
              '189': 190.snake
              '190': 191.sneaker
              '191': 192.snowmobile
              '192': 193.soccer-ball
              '193': 194.socks
              '194': 195.soda-can
              '195': 196.spaghetti
              '196': 197.speed-boat
              '197': 198.spider
              '198': 199.spoon
              '199': 200.stained-glass
              '200': 201.starfish-101
              '201': 202.steering-wheel
              '202': 203.stirrups
              '203': 204.sunflower-101
              '204': 205.superman
              '205': 206.sushi
              '206': 207.swan
              '207': 208.swiss-army-knife
              '208': 209.sword
              '209': 210.syringe
              '210': 211.tambourine
              '211': 212.teapot
              '212': 213.teddy-bear
              '213': 214.teepee
              '214': 215.telephone-box
              '215': 216.tennis-ball
              '216': 217.tennis-court
              '217': 218.tennis-racket
              '218': 219.theodolite
              '219': 220.toaster
              '220': 221.tomato
              '221': 222.tombstone
              '222': 223.top-hat
              '223': 224.touring-bike
              '224': 225.tower-pisa
              '225': 226.traffic-light
              '226': 227.treadmill
              '227': 228.triceratops
              '228': 229.tricycle
              '229': 230.trilobite-101
              '230': 231.tripod
              '231': 232.t-shirt
              '232': 233.tuning-fork
              '233': 234.tweezer
              '234': 235.umbrella-101
              '235': 236.unicorn
              '236': 237.vcr
              '237': 238.video-projector
              '238': 239.washing-machine
              '239': 240.watch-101
              '240': 241.waterfall
              '241': 242.watermelon
              '242': 243.welding-mask
              '243': 244.wheelbarrow
              '244': 245.windmill
              '245': 246.wine-bottle
              '246': 247.xylophone
              '247': 248.yarmulke
              '248': 249.yo-yo
              '249': 250.zebra
              '250': 251.airplanes-101
              '251': 252.car-side-101
              '252': 253.faces-easy-101
              '253': 254.greyhound
              '254': 255.tennis-shoes
              '255': 256.toad
              '256': 257.clutter
      - name: data
        dtype: binary
    splits:
      - name: train
        num_bytes: 3076928106
        num_examples: 30607
    download_size: 1165568633
    dataset_size: 3076928106
  - config_name: I2E-FashionMNIST
    features:
      - name: file_path
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': '0'
              '1': '1'
              '2': '2'
              '3': '3'
              '4': '4'
              '5': '5'
              '6': '6'
              '7': '7'
              '8': '8'
              '9': '9'
      - name: data
        dtype: binary
    splits:
      - name: train
        num_bytes: 132648890
        num_examples: 60000
      - name: validation
        num_bytes: 22098890
        num_examples: 10000
    download_size: 68196022
    dataset_size: 154747780
  - config_name: I2E-ImageNet
    features:
      - name: file_path
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': n01440764
              '1': n01443537
              '2': n01484850
              '3': n01491361
              '4': n01494475
              '5': n01496331
              '6': n01498041
              '7': n01514668
              '8': n01514859
              '9': n01518878
              '10': n01530575
              '11': n01531178
              '12': n01532829
              '13': n01534433
              '14': n01537544
              '15': n01558993
              '16': n01560419
              '17': n01580077
              '18': n01582220
              '19': n01592084
              '20': n01601694
              '21': n01608432
              '22': n01614925
              '23': n01616318
              '24': n01622779
              '25': n01629819
              '26': n01630670
              '27': n01631663
              '28': n01632458
              '29': n01632777
              '30': n01641577
              '31': n01644373
              '32': n01644900
              '33': n01664065
              '34': n01665541
              '35': n01667114
              '36': n01667778
              '37': n01669191
              '38': n01675722
              '39': n01677366
              '40': n01682714
              '41': n01685808
              '42': n01687978
              '43': n01688243
              '44': n01689811
              '45': n01692333
              '46': n01693334
              '47': n01694178
              '48': n01695060
              '49': n01697457
              '50': n01698640
              '51': n01704323
              '52': n01728572
              '53': n01728920
              '54': n01729322
              '55': n01729977
              '56': n01734418
              '57': n01735189
              '58': n01737021
              '59': n01739381
              '60': n01740131
              '61': n01742172
              '62': n01744401
              '63': n01748264
              '64': n01749939
              '65': n01751748
              '66': n01753488
              '67': n01755581
              '68': n01756291
              '69': n01768244
              '70': n01770081
              '71': n01770393
              '72': n01773157
              '73': n01773549
              '74': n01773797
              '75': n01774384
              '76': n01774750
              '77': n01775062
              '78': n01776313
              '79': n01784675
              '80': n01795545
              '81': n01796340
              '82': n01797886
              '83': n01798484
              '84': n01806143
              '85': n01806567
              '86': n01807496
              '87': n01817953
              '88': n01818515
              '89': n01819313
              '90': n01820546
              '91': n01824575
              '92': n01828970
              '93': n01829413
              '94': n01833805
              '95': n01843065
              '96': n01843383
              '97': n01847000
              '98': n01855032
              '99': n01855672
              '100': n01860187
              '101': n01871265
              '102': n01872401
              '103': n01873310
              '104': n01877812
              '105': n01882714
              '106': n01883070
              '107': n01910747
              '108': n01914609
              '109': n01917289
              '110': n01924916
              '111': n01930112
              '112': n01943899
              '113': n01944390
              '114': n01945685
              '115': n01950731
              '116': n01955084
              '117': n01968897
              '118': n01978287
              '119': n01978455
              '120': n01980166
              '121': n01981276
              '122': n01983481
              '123': n01984695
              '124': n01985128
              '125': n01986214
              '126': n01990800
              '127': n02002556
              '128': n02002724
              '129': n02006656
              '130': n02007558
              '131': n02009229
              '132': n02009912
              '133': n02011460
              '134': n02012849
              '135': n02013706
              '136': n02017213
              '137': n02018207
              '138': n02018795
              '139': n02025239
              '140': n02027492
              '141': n02028035
              '142': n02033041
              '143': n02037110
              '144': n02051845
              '145': n02056570
              '146': n02058221
              '147': n02066245
              '148': n02071294
              '149': n02074367
              '150': n02077923
              '151': n02085620
              '152': n02085782
              '153': n02085936
              '154': n02086079
              '155': n02086240
              '156': n02086646
              '157': n02086910
              '158': n02087046
              '159': n02087394
              '160': n02088094
              '161': n02088238
              '162': n02088364
              '163': n02088466
              '164': n02088632
              '165': n02089078
              '166': n02089867
              '167': n02089973
              '168': n02090379
              '169': n02090622
              '170': n02090721
              '171': n02091032
              '172': n02091134
              '173': n02091244
              '174': n02091467
              '175': n02091635
              '176': n02091831
              '177': n02092002
              '178': n02092339
              '179': n02093256
              '180': n02093428
              '181': n02093647
              '182': n02093754
              '183': n02093859
              '184': n02093991
              '185': n02094114
              '186': n02094258
              '187': n02094433
              '188': n02095314
              '189': n02095570
              '190': n02095889
              '191': n02096051
              '192': n02096177
              '193': n02096294
              '194': n02096437
              '195': n02096585
              '196': n02097047
              '197': n02097130
              '198': n02097209
              '199': n02097298
              '200': n02097474
              '201': n02097658
              '202': n02098105
              '203': n02098286
              '204': n02098413
              '205': n02099267
              '206': n02099429
              '207': n02099601
              '208': n02099712
              '209': n02099849
              '210': n02100236
              '211': n02100583
              '212': n02100735
              '213': n02100877
              '214': n02101006
              '215': n02101388
              '216': n02101556
              '217': n02102040
              '218': n02102177
              '219': n02102318
              '220': n02102480
              '221': n02102973
              '222': n02104029
              '223': n02104365
              '224': n02105056
              '225': n02105162
              '226': n02105251
              '227': n02105412
              '228': n02105505
              '229': n02105641
              '230': n02105855
              '231': n02106030
              '232': n02106166
              '233': n02106382
              '234': n02106550
              '235': n02106662
              '236': n02107142
              '237': n02107312
              '238': n02107574
              '239': n02107683
              '240': n02107908
              '241': n02108000
              '242': n02108089
              '243': n02108422
              '244': n02108551
              '245': n02108915
              '246': n02109047
              '247': n02109525
              '248': n02109961
              '249': n02110063
              '250': n02110185
              '251': n02110341
              '252': n02110627
              '253': n02110806
              '254': n02110958
              '255': n02111129
              '256': n02111277
              '257': n02111500
              '258': n02111889
              '259': n02112018
              '260': n02112137
              '261': n02112350
              '262': n02112706
              '263': n02113023
              '264': n02113186
              '265': n02113624
              '266': n02113712
              '267': n02113799
              '268': n02113978
              '269': n02114367
              '270': n02114548
              '271': n02114712
              '272': n02114855
              '273': n02115641
              '274': n02115913
              '275': n02116738
              '276': n02117135
              '277': n02119022
              '278': n02119789
              '279': n02120079
              '280': n02120505
              '281': n02123045
              '282': n02123159
              '283': n02123394
              '284': n02123597
              '285': n02124075
              '286': n02125311
              '287': n02127052
              '288': n02128385
              '289': n02128757
              '290': n02128925
              '291': n02129165
              '292': n02129604
              '293': n02130308
              '294': n02132136
              '295': n02133161
              '296': n02134084
              '297': n02134418
              '298': n02137549
              '299': n02138441
              '300': n02165105
              '301': n02165456
              '302': n02167151
              '303': n02168699
              '304': n02169497
              '305': n02172182
              '306': n02174001
              '307': n02177972
              '308': n02190166
              '309': n02206856
              '310': n02219486
              '311': n02226429
              '312': n02229544
              '313': n02231487
              '314': n02233338
              '315': n02236044
              '316': n02256656
              '317': n02259212
              '318': n02264363
              '319': n02268443
              '320': n02268853
              '321': n02276258
              '322': n02277742
              '323': n02279972
              '324': n02280649
              '325': n02281406
              '326': n02281787
              '327': n02317335
              '328': n02319095
              '329': n02321529
              '330': n02325366
              '331': n02326432
              '332': n02328150
              '333': n02342885
              '334': n02346627
              '335': n02356798
              '336': n02361337
              '337': n02363005
              '338': n02364673
              '339': n02389026
              '340': n02391049
              '341': n02395406
              '342': n02396427
              '343': n02397096
              '344': n02398521
              '345': n02403003
              '346': n02408429
              '347': n02410509
              '348': n02412080
              '349': n02415577
              '350': n02417914
              '351': n02422106
              '352': n02422699
              '353': n02423022
              '354': n02437312
              '355': n02437616
              '356': n02441942
              '357': n02442845
              '358': n02443114
              '359': n02443484
              '360': n02444819
              '361': n02445715
              '362': n02447366
              '363': n02454379
              '364': n02457408
              '365': n02480495
              '366': n02480855
              '367': n02481823
              '368': n02483362
              '369': n02483708
              '370': n02484975
              '371': n02486261
              '372': n02486410
              '373': n02487347
              '374': n02488291
              '375': n02488702
              '376': n02489166
              '377': n02490219
              '378': n02492035
              '379': n02492660
              '380': n02493509
              '381': n02493793
              '382': n02494079
              '383': n02497673
              '384': n02500267
              '385': n02504013
              '386': n02504458
              '387': n02509815
              '388': n02510455
              '389': n02514041
              '390': n02526121
              '391': n02536864
              '392': n02606052
              '393': n02607072
              '394': n02640242
              '395': n02641379
              '396': n02643566
              '397': n02655020
              '398': n02666196
              '399': n02667093
              '400': n02669723
              '401': n02672831
              '402': n02676566
              '403': n02687172
              '404': n02690373
              '405': n02692877
              '406': n02699494
              '407': n02701002
              '408': n02704792
              '409': n02708093
              '410': n02727426
              '411': n02730930
              '412': n02747177
              '413': n02749479
              '414': n02769748
              '415': n02776631
              '416': n02777292
              '417': n02782093
              '418': n02783161
              '419': n02786058
              '420': n02787622
              '421': n02788148
              '422': n02790996
              '423': n02791124
              '424': n02791270
              '425': n02793495
              '426': n02794156
              '427': n02795169
              '428': n02797295
              '429': n02799071
              '430': n02802426
              '431': n02804414
              '432': n02804610
              '433': n02807133
              '434': n02808304
              '435': n02808440
              '436': n02814533
              '437': n02814860
              '438': n02815834
              '439': n02817516
              '440': n02823428
              '441': n02823750
              '442': n02825657
              '443': n02834397
              '444': n02835271
              '445': n02837789
              '446': n02840245
              '447': n02841315
              '448': n02843684
              '449': n02859443
              '450': n02860847
              '451': n02865351
              '452': n02869837
              '453': n02870880
              '454': n02871525
              '455': n02877765
              '456': n02879718
              '457': n02883205
              '458': n02892201
              '459': n02892767
              '460': n02894605
              '461': n02895154
              '462': n02906734
              '463': n02909870
              '464': n02910353
              '465': n02916936
              '466': n02917067
              '467': n02927161
              '468': n02930766
              '469': n02939185
              '470': n02948072
              '471': n02950826
              '472': n02951358
              '473': n02951585
              '474': n02963159
              '475': n02965783
              '476': n02966193
              '477': n02966687
              '478': n02971356
              '479': n02974003
              '480': n02977058
              '481': n02978881
              '482': n02979186
              '483': n02980441
              '484': n02981792
              '485': n02988304
              '486': n02992211
              '487': n02992529
              '488': n02999410
              '489': n03000134
              '490': n03000247
              '491': n03000684
              '492': n03014705
              '493': n03016953
              '494': n03017168
              '495': n03018349
              '496': n03026506
              '497': n03028079
              '498': n03032252
              '499': n03041632
              '500': n03042490
              '501': n03045698
              '502': n03047690
              '503': n03062245
              '504': n03063599
              '505': n03063689
              '506': n03065424
              '507': n03075370
              '508': n03085013
              '509': n03089624
              '510': n03095699
              '511': n03100240
              '512': n03109150
              '513': n03110669
              '514': n03124043
              '515': n03124170
              '516': n03125729
              '517': n03126707
              '518': n03127747
              '519': n03127925
              '520': n03131574
              '521': n03133878
              '522': n03134739
              '523': n03141823
              '524': n03146219
              '525': n03160309
              '526': n03179701
              '527': n03180011
              '528': n03187595
              '529': n03188531
              '530': n03196217
              '531': n03197337
              '532': n03201208
              '533': n03207743
              '534': n03207941
              '535': n03208938
              '536': n03216828
              '537': n03218198
              '538': n03220513
              '539': n03223299
              '540': n03240683
              '541': n03249569
              '542': n03250847
              '543': n03255030
              '544': n03259280
              '545': n03271574
              '546': n03272010
              '547': n03272562
              '548': n03290653
              '549': n03291819
              '550': n03297495
              '551': n03314780
              '552': n03325584
              '553': n03337140
              '554': n03344393
              '555': n03345487
              '556': n03347037
              '557': n03355925
              '558': n03372029
              '559': n03376595
              '560': n03379051
              '561': n03384352
              '562': n03388043
              '563': n03388183
              '564': n03388549
              '565': n03393912
              '566': n03394916
              '567': n03400231
              '568': n03404251
              '569': n03417042
              '570': n03424325
              '571': n03425413
              '572': n03443371
              '573': n03444034
              '574': n03445777
              '575': n03445924
              '576': n03447447
              '577': n03447721
              '578': n03450230
              '579': n03452741
              '580': n03457902
              '581': n03459775
              '582': n03461385
              '583': n03467068
              '584': n03476684
              '585': n03476991
              '586': n03478589
              '587': n03481172
              '588': n03482405
              '589': n03483316
              '590': n03485407
              '591': n03485794
              '592': n03492542
              '593': n03494278
              '594': n03495258
              '595': n03496892
              '596': n03498962
              '597': n03527444
              '598': n03529860
              '599': n03530642
              '600': n03532672
              '601': n03534580
              '602': n03535780
              '603': n03538406
              '604': n03544143
              '605': n03584254
              '606': n03584829
              '607': n03590841
              '608': n03594734
              '609': n03594945
              '610': n03595614
              '611': n03598930
              '612': n03599486
              '613': n03602883
              '614': n03617480
              '615': n03623198
              '616': n03627232
              '617': n03630383
              '618': n03633091
              '619': n03637318
              '620': n03642806
              '621': n03649909
              '622': n03657121
              '623': n03658185
              '624': n03661043
              '625': n03662601
              '626': n03666591
              '627': n03670208
              '628': n03673027
              '629': n03676483
              '630': n03680355
              '631': n03690938
              '632': n03691459
              '633': n03692522
              '634': n03697007
              '635': n03706229
              '636': n03709823
              '637': n03710193
              '638': n03710637
              '639': n03710721
              '640': n03717622
              '641': n03720891
              '642': n03721384
              '643': n03724870
              '644': n03729826
              '645': n03733131
              '646': n03733281
              '647': n03733805
              '648': n03742115
              '649': n03743016
              '650': n03759954
              '651': n03761084
              '652': n03763968
              '653': n03764736
              '654': n03769881
              '655': n03770439
              '656': n03770679
              '657': n03773504
              '658': n03775071
              '659': n03775546
              '660': n03776460
              '661': n03777568
              '662': n03777754
              '663': n03781244
              '664': n03782006
              '665': n03785016
              '666': n03786901
              '667': n03787032
              '668': n03788195
              '669': n03788365
              '670': n03791053
              '671': n03792782
              '672': n03792972
              '673': n03793489
              '674': n03794056
              '675': n03796401
              '676': n03803284
              '677': n03804744
              '678': n03814639
              '679': n03814906
              '680': n03825788
              '681': n03832673
              '682': n03837869
              '683': n03838899
              '684': n03840681
              '685': n03841143
              '686': n03843555
              '687': n03854065
              '688': n03857828
              '689': n03866082
              '690': n03868242
              '691': n03868863
              '692': n03871628
              '693': n03873416
              '694': n03874293
              '695': n03874599
              '696': n03876231
              '697': n03877472
              '698': n03877845
              '699': n03884397
              '700': n03887697
              '701': n03888257
              '702': n03888605
              '703': n03891251
              '704': n03891332
              '705': n03895866
              '706': n03899768
              '707': n03902125
              '708': n03903868
              '709': n03908618
              '710': n03908714
              '711': n03916031
              '712': n03920288
              '713': n03924679
              '714': n03929660
              '715': n03929855
              '716': n03930313
              '717': n03930630
              '718': n03933933
              '719': n03935335
              '720': n03937543
              '721': n03938244
              '722': n03942813
              '723': n03944341
              '724': n03947888
              '725': n03950228
              '726': n03954731
              '727': n03956157
              '728': n03958227
              '729': n03961711
              '730': n03967562
              '731': n03970156
              '732': n03976467
              '733': n03976657
              '734': n03977966
              '735': n03980874
              '736': n03982430
              '737': n03983396
              '738': n03991062
              '739': n03992509
              '740': n03995372
              '741': n03998194
              '742': n04004767
              '743': n04005630
              '744': n04008634
              '745': n04009552
              '746': n04019541
              '747': n04023962
              '748': n04026417
              '749': n04033901
              '750': n04033995
              '751': n04037443
              '752': n04039381
              '753': n04040759
              '754': n04041544
              '755': n04044716
              '756': n04049303
              '757': n04065272
              '758': n04067472
              '759': n04069434
              '760': n04070727
              '761': n04074963
              '762': n04081281
              '763': n04086273
              '764': n04090263
              '765': n04099969
              '766': n04111531
              '767': n04116512
              '768': n04118538
              '769': n04118776
              '770': n04120489
              '771': n04125021
              '772': n04127249
              '773': n04131690
              '774': n04133789
              '775': n04136333
              '776': n04141076
              '777': n04141327
              '778': n04141975
              '779': n04146614
              '780': n04147183
              '781': n04149813
              '782': n04152593
              '783': n04153751
              '784': n04154565
              '785': n04162706
              '786': n04179913
              '787': n04192698
              '788': n04200800
              '789': n04201297
              '790': n04204238
              '791': n04204347
              '792': n04208210
              '793': n04209133
              '794': n04209239
              '795': n04228054
              '796': n04229816
              '797': n04235860
              '798': n04238763
              '799': n04239074
              '800': n04243546
              '801': n04251144
              '802': n04252077
              '803': n04252225
              '804': n04254120
              '805': n04254680
              '806': n04254777
              '807': n04258138
              '808': n04259630
              '809': n04263257
              '810': n04264628
              '811': n04265275
              '812': n04266014
              '813': n04270147
              '814': n04273569
              '815': n04275548
              '816': n04277352
              '817': n04285008
              '818': n04286575
              '819': n04296562
              '820': n04310018
              '821': n04311004
              '822': n04311174
              '823': n04317175
              '824': n04325704
              '825': n04326547
              '826': n04328186
              '827': n04330267
              '828': n04332243
              '829': n04335435
              '830': n04336792
              '831': n04344873
              '832': n04346328
              '833': n04347754
              '834': n04350905
              '835': n04355338
              '836': n04355933
              '837': n04356056
              '838': n04357314
              '839': n04366367
              '840': n04367480
              '841': n04370456
              '842': n04371430
              '843': n04371774
              '844': n04372370
              '845': n04376876
              '846': n04380533
              '847': n04389033
              '848': n04392985
              '849': n04398044
              '850': n04399382
              '851': n04404412
              '852': n04409515
              '853': n04417672
              '854': n04418357
              '855': n04423845
              '856': n04428191
              '857': n04429376
              '858': n04435653
              '859': n04442312
              '860': n04443257
              '861': n04447861
              '862': n04456115
              '863': n04458633
              '864': n04461696
              '865': n04462240
              '866': n04465501
              '867': n04467665
              '868': n04476259
              '869': n04479046
              '870': n04482393
              '871': n04483307
              '872': n04485082
              '873': n04486054
              '874': n04487081
              '875': n04487394
              '876': n04493381
              '877': n04501370
              '878': n04505470
              '879': n04507155
              '880': n04509417
              '881': n04515003
              '882': n04517823
              '883': n04522168
              '884': n04523525
              '885': n04525038
              '886': n04525305
              '887': n04532106
              '888': n04532670
              '889': n04536866
              '890': n04540053
              '891': n04542943
              '892': n04548280
              '893': n04548362
              '894': n04550184
              '895': n04552348
              '896': n04553703
              '897': n04554684
              '898': n04557648
              '899': n04560804
              '900': n04562935
              '901': n04579145
              '902': n04579432
              '903': n04584207
              '904': n04589890
              '905': n04590129
              '906': n04591157
              '907': n04591713
              '908': n04592741
              '909': n04596742
              '910': n04597913
              '911': n04599235
              '912': n04604644
              '913': n04606251
              '914': n04612504
              '915': n04613696
              '916': n06359193
              '917': n06596364
              '918': n06785654
              '919': n06794110
              '920': n06874185
              '921': n07248320
              '922': n07565083
              '923': n07579787
              '924': n07583066
              '925': n07584110
              '926': n07590611
              '927': n07613480
              '928': n07614500
              '929': n07615774
              '930': n07684084
              '931': n07693725
              '932': n07695742
              '933': n07697313
              '934': n07697537
              '935': n07711569
              '936': n07714571
              '937': n07714990
              '938': n07715103
              '939': n07716358
              '940': n07716906
              '941': n07717410
              '942': n07717556
              '943': n07718472
              '944': n07718747
              '945': n07720875
              '946': n07730033
              '947': n07734744
              '948': n07742313
              '949': n07745940
              '950': n07747607
              '951': n07749582
              '952': n07753113
              '953': n07753275
              '954': n07753592
              '955': n07754684
              '956': n07760859
              '957': n07768694
              '958': n07802026
              '959': n07831146
              '960': n07836838
              '961': n07860988
              '962': n07871810
              '963': n07873807
              '964': n07875152
              '965': n07880968
              '966': n07892512
              '967': n07920052
              '968': n07930864
              '969': n07932039
              '970': n09193705
              '971': n09229709
              '972': n09246464
              '973': n09256479
              '974': n09288635
              '975': n09332890
              '976': n09399592
              '977': n09421951
              '978': n09428293
              '979': n09468604
              '980': n09472597
              '981': n09835506
              '982': n10148035
              '983': n10565667
              '984': n11879895
              '985': n11939491
              '986': n12057211
              '987': n12144580
              '988': n12267677
              '989': n12620546
              '990': n12768682
              '991': n12985857
              '992': n12998815
              '993': n13037406
              '994': n13040303
              '995': n13044778
              '996': n13052670
              '997': n13054560
              '998': n13133613
              '999': n15075141
      - name: data
        dtype: binary
    splits:
      - name: train
        num_bytes: 128798692994
        num_examples: 1281167
      - name: validation
        num_bytes: 5027050000
        num_examples: 50000
    download_size: 57961329620
    dataset_size: 133825742994
  - config_name: I2E-MNIST
    features:
      - name: file_path
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': '0'
              '1': '1'
              '2': '2'
              '3': '3'
              '4': '4'
              '5': '5'
              '6': '6'
              '7': '7'
              '8': '8'
              '9': '9'
      - name: data
        dtype: binary
    splits:
      - name: train
        num_bytes: 132648890
        num_examples: 60000
      - name: validation
        num_bytes: 22098890
        num_examples: 10000
    download_size: 60473109
    dataset_size: 154747780
  - config_name: I2E-Mini-ImageNet
    features:
      - name: file_path
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': n01532829
              '1': n01558993
              '2': n01704323
              '3': n01749939
              '4': n01770081
              '5': n01843383
              '6': n01855672
              '7': n01910747
              '8': n01930112
              '9': n01981276
              '10': n02074367
              '11': n02089867
              '12': n02091244
              '13': n02091831
              '14': n02099601
              '15': n02101006
              '16': n02105505
              '17': n02108089
              '18': n02108551
              '19': n02108915
              '20': n02110063
              '21': n02110341
              '22': n02111277
              '23': n02113712
              '24': n02114548
              '25': n02116738
              '26': n02120079
              '27': n02129165
              '28': n02138441
              '29': n02165456
              '30': n02174001
              '31': n02219486
              '32': n02443484
              '33': n02457408
              '34': n02606052
              '35': n02687172
              '36': n02747177
              '37': n02795169
              '38': n02823428
              '39': n02871525
              '40': n02950826
              '41': n02966193
              '42': n02971356
              '43': n02981792
              '44': n03017168
              '45': n03047690
              '46': n03062245
              '47': n03075370
              '48': n03127925
              '49': n03146219
              '50': n03207743
              '51': n03220513
              '52': n03272010
              '53': n03337140
              '54': n03347037
              '55': n03400231
              '56': n03417042
              '57': n03476684
              '58': n03527444
              '59': n03535780
              '60': n03544143
              '61': n03584254
              '62': n03676483
              '63': n03770439
              '64': n03773504
              '65': n03775546
              '66': n03838899
              '67': n03854065
              '68': n03888605
              '69': n03908618
              '70': n03924679
              '71': n03980874
              '72': n03998194
              '73': n04067472
              '74': n04146614
              '75': n04149813
              '76': n04243546
              '77': n04251144
              '78': n04258138
              '79': n04275548
              '80': n04296562
              '81': n04389033
              '82': n04418357
              '83': n04435653
              '84': n04443257
              '85': n04509417
              '86': n04515003
              '87': n04522168
              '88': n04596742
              '89': n04604644
              '90': n04612504
              '91': n06794110
              '92': n07584110
              '93': n07613480
              '94': n07697537
              '95': n07747607
              '96': n09246464
              '97': n09256479
              '98': n13054560
              '99': n13133613
      - name: data
        dtype: binary
    splits:
      - name: train
        num_bytes: 6031941884
        num_examples: 60000
    download_size: 2568434568
    dataset_size: 6031941884
configs:
  - config_name: I2E-CIFAR10
    data_files:
      - split: train
        path: I2E-CIFAR10/train-*
      - split: validation
        path: I2E-CIFAR10/validation-*
  - config_name: I2E-CIFAR100
    data_files:
      - split: train
        path: I2E-CIFAR100/train-*
      - split: validation
        path: I2E-CIFAR100/validation-*
  - config_name: I2E-Caltech101
    data_files:
      - split: train
        path: I2E-Caltech101/train-*
  - config_name: I2E-Caltech256
    data_files:
      - split: train
        path: I2E-Caltech256/train-*
  - config_name: I2E-FashionMNIST
    data_files:
      - split: train
        path: I2E-FashionMNIST/train-*
      - split: validation
        path: I2E-FashionMNIST/validation-*
  - config_name: I2E-ImageNet
    data_files:
      - split: train
        path: I2E-ImageNet/train-*
      - split: validation
        path: I2E-ImageNet/validation-*
  - config_name: I2E-MNIST
    data_files:
      - split: train
        path: I2E-MNIST/train-*
      - split: validation
        path: I2E-MNIST/validation-*
  - config_name: I2E-Mini-ImageNet
    data_files:
      - split: train
        path: I2E-Mini-ImageNet/train-*
license: mit
task_categories:
  - image-classification
  - video-classification
tags:
  - neuromorphic
  - snn
  - spiking neural networks
  - event
  - dvs
  - biology
  - pytorch
  - imagenet
  - cifar10
  - cifar100
  - caltech101
  - caltech256
  - mnist
  - fashionmnist
  - mini-imagenet
pretty_name: I2E Neuromorphic Dataset
language:
  - en

I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks

Paper AAAI 2026 Google Scholar GitHub

Hugging Face Hugging Face

πŸš€ Introduction

This repository hosts the I2E-Datasets, a comprehensive suite of neuromorphic datasets generated using the I2E (Image-to-Event) framework. This work has been accepted for Oral Presentation at AAAI 2026.

I2E bridges the data scarcity gap in Neuromorphic Computing and Spiking Neural Networks (SNNs). By simulating microsaccadic eye movements via highly parallelized convolution, I2E converts static images into high-fidelity event streams in real-time (>300x faster than prior methods).

πŸ‘οΈ Visualization

The following comparisons illustrate the high-fidelity conversion from static RGB images to dynamic event streams using I2E.

Original 1 Converted 1 Original 2 Converted 2
Original 3 Converted 3 Original 4 Converted 4

More visualization comparisons can be found in Visualization.md.

πŸ“¦ Dataset Catalog

We provide a comprehensive collection of standard benchmarks converted into event streams via the I2E algorithm.

1. Standard Benchmarks (Classification)

Config Name Original Source Resolution $(H, W)$ I2E Ratio Event Rate Samples (Train/Val)
I2E-CIFAR10 CIFAR-10 128 x 128 0.07 5.86% 50k / 10k
I2E-CIFAR100 CIFAR-100 128 x 128 0.07 5.76% 50k / 10k
I2E-ImageNet ILSVRC2012 224 x 224 0.12 6.66% 1.28M / 50k

2. Transfer Learning & Fine-grained

Config Name Original Source Resolution $(H, W)$ I2E Ratio Event Rate Samples
I2E-Caltech101 Caltech-101 224 x 224 0.12 6.25% 8.677k
I2E-Caltech256 Caltech-256 224 x 224 0.12 6.04% 30.607k
I2E-Mini-ImageNet Mini-ImageNet 224 x 224 0.12 6.65% 60k

3. Small Scale / Toy

Config Name Original Source Resolution $(H, W)$ I2E Ratio Event Rate Samples
I2E-MNIST MNIST 32 x 32 0.10 9.56% 60k / 10k
I2E-FashionMNIST Fashion-MNIST 32 x 32 0.15 10.76% 60k / 10k

πŸ”œ Coming Soon: Object Detection and Semantic Segmentation datasets.

πŸ› οΈ Preprocessing Protocol

To ensure reproducibility, we specify the exact data augmentation pipeline applied to the static images before I2E conversion.

The (H, W) in the code below corresponds to the "Resolution" column in the Dataset Catalog above.

from torchvision.transforms import v2

# Standard Pre-processing Pipeline used for I2E generation
transform_train = v2.Compose([
    # Ensure 3-channel RGB (crucial for grayscale datasets like MNIST)
    v2.Lambda(lambda x: x.convert('RGB')),
    v2.PILToTensor(),
    v2.Resize((H, W), interpolation=v2.InterpolationMode.BICUBIC),
    v2.ToDtype(torch.float32, scale=True),
])

πŸ’» Usage

πŸš€ Quick Start

You do not need to download any extra scripts. Just copy the code below. It handles the binary unpacking (converting Parquet bytes to PyTorch Tensors) automatically.

import io
import torch
import numpy as np
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader

# ==================================================================
# 1. Core Decoding Function (Handles the binary packing)
# ==================================================================
def unpack_event_data(item, use_io=True):
    """
    Decodes the custom binary format:
    Header (8 bytes) -> Shape (T, C, H, W) -> Body (Packed Bits)
    """
    if use_io:
        with io.BytesIO(item['data']) as f:
            raw_data = np.load(f)
    else:
        raw_data = np.load(item)
        
    header_size = 4 * 2      # Parse Header (First 8 bytes for 4 uint16 shape values)
    shape_header = raw_data[:header_size].view(np.uint16)
    original_shape = tuple(shape_header) # Returns (T, C, H, W)
    
    packed_body = raw_data[header_size:]    # Parse Body & Bit-unpacking
    unpacked = np.unpackbits(packed_body)
    
    num_elements = np.prod(original_shape)  # Extract valid bits (Handle padding)
    event_flat = unpacked[:num_elements]
    event_data = event_flat.reshape(original_shape).astype(np.float32).copy()
    
    return torch.from_numpy(event_data)

# ==================================================================
# 2. Dataset Wrapper
# ==================================================================
class I2E_Dataset(Dataset):
    def __init__(self, cache_dir, config_name, split='train', transform=None, target_transform=None):
        print(f"πŸš€ Loading {config_name} [{split}] from Hugging Face...")
        self.ds = load_dataset('UESTC-BICS/I2E', config_name, split=split, cache_dir=cache_dir, keep_in_memory=False)
        self.transform = transform
        self.target_transform = target_transform

    def __len__(self):
        return len(self.ds)

    def __getitem__(self, idx):
        item = self.ds[idx]
        event = unpack_event_data(item)
        label = item['label']
        if self.transform:
            event = self.transform(event)
        if self.target_transform:
            label = self.target_transform(label)
        return event, label

# ==================================================================
# 3. Run Example
# ==================================================================
if __name__ == "__main__":
    import os
    os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'     # Use HF mirror server in some regions

    DATASET_NAME = 'I2E-CIFAR10'                            # Choose your config: 'I2E-CIFAR10', 'I2E-ImageNet', etc.
    MODEL_PATH = 'Your cache path here'                     # e.g., './hf_datasets_cache/'
    
    train_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='train')
    val_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='validation')

    train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=32, persistent_workers=True)
    val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=32, persistent_workers=True)

    events, labels = next(iter(train_loader))
    print(f"βœ… Loaded Batch Shape: {events.shape}") # Expect: [32, T, 2, H, W]
    print(f"βœ… Labels: {labels}")

πŸ† Results (SOTA)

Our I2E-pretraining sets new benchmarks for Sim-to-Real transfer on CIFAR10-DVS.

Dataset Architecture Method Top-1 Acc
CIFAR10-DVS
(Real)
MS-ResNet18 Baseline 65.6%
MS-ResNet18 Transfer-I 83.1%
MS-ResNet18 Transfer-II (Sim-to-Real) 92.5%

For full results and model weights, please visit our GitHub Repo.

GitHub Hugging Face

πŸ“œ Citation

If you find this work or the models useful, please cite our AAAI 2026 paper:

@article{ma2025i2e,
  title={I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks},
  author={Ma, Ruichen and Meng, Liwei and Qiao, Guanchao and Ning, Ning and Liu, Yang and Hu, Shaogang},
  journal={arXiv preprint arXiv:2511.08065},
  year={2025}
}