I2E / README.md
UESTC-BICS's picture
Update README.md
edfd5e0 verified
---
dataset_info:
- config_name: I2E-CIFAR10
features:
- name: file_path
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
'2': '2'
'3': '3'
'4': '4'
'5': '5'
'6': '6'
'7': '7'
'8': '8'
'9': '9'
- name: data
dtype: binary
splits:
- name: train
num_bytes: 1646538890
num_examples: 50000
- name: validation
num_bytes: 329298890
num_examples: 10000
download_size: 464478602
dataset_size: 1975837780
- config_name: I2E-CIFAR100
features:
- name: file_path
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
'2': '2'
'3': '3'
'4': '4'
'5': '5'
'6': '6'
'7': '7'
'8': '8'
'9': '9'
'10': '10'
'11': '11'
'12': '12'
'13': '13'
'14': '14'
'15': '15'
'16': '16'
'17': '17'
'18': '18'
'19': '19'
'20': '20'
'21': '21'
'22': '22'
'23': '23'
'24': '24'
'25': '25'
'26': '26'
'27': '27'
'28': '28'
'29': '29'
'30': '30'
'31': '31'
'32': '32'
'33': '33'
'34': '34'
'35': '35'
'36': '36'
'37': '37'
'38': '38'
'39': '39'
'40': '40'
'41': '41'
'42': '42'
'43': '43'
'44': '44'
'45': '45'
'46': '46'
'47': '47'
'48': '48'
'49': '49'
'50': '50'
'51': '51'
'52': '52'
'53': '53'
'54': '54'
'55': '55'
'56': '56'
'57': '57'
'58': '58'
'59': '59'
'60': '60'
'61': '61'
'62': '62'
'63': '63'
'64': '64'
'65': '65'
'66': '66'
'67': '67'
'68': '68'
'69': '69'
'70': '70'
'71': '71'
'72': '72'
'73': '73'
'74': '74'
'75': '75'
'76': '76'
'77': '77'
'78': '78'
'79': '79'
'80': '80'
'81': '81'
'82': '82'
'83': '83'
'84': '84'
'85': '85'
'86': '86'
'87': '87'
'88': '88'
'89': '89'
'90': '90'
'91': '91'
'92': '92'
'93': '93'
'94': '94'
'95': '95'
'96': '96'
'97': '97'
'98': '98'
'99': '99'
- name: data
dtype: binary
splits:
- name: train
num_bytes: 1646583890
num_examples: 50000
- name: validation
num_bytes: 329307890
num_examples: 10000
download_size: 462298257
dataset_size: 1975891780
- config_name: I2E-Caltech101
features:
- name: file_path
dtype: string
- name: label
dtype:
class_label:
names:
'0': Faces
'1': Faces_easy
'2': Leopards
'3': Motorbikes
'4': accordion
'5': airplanes
'6': anchor
'7': ant
'8': barrel
'9': bass
'10': beaver
'11': binocular
'12': bonsai
'13': brain
'14': brontosaurus
'15': buddha
'16': butterfly
'17': camera
'18': cannon
'19': car_side
'20': ceiling_fan
'21': cellphone
'22': chair
'23': chandelier
'24': cougar_body
'25': cougar_face
'26': crab
'27': crayfish
'28': crocodile
'29': crocodile_head
'30': cup
'31': dalmatian
'32': dollar_bill
'33': dolphin
'34': dragonfly
'35': electric_guitar
'36': elephant
'37': emu
'38': euphonium
'39': ewer
'40': ferry
'41': flamingo
'42': flamingo_head
'43': garfield
'44': gerenuk
'45': gramophone
'46': grand_piano
'47': hawksbill
'48': headphone
'49': hedgehog
'50': helicopter
'51': ibis
'52': inline_skate
'53': joshua_tree
'54': kangaroo
'55': ketch
'56': lamp
'57': laptop
'58': llama
'59': lobster
'60': lotus
'61': mandolin
'62': mayfly
'63': menorah
'64': metronome
'65': minaret
'66': nautilus
'67': octopus
'68': okapi
'69': pagoda
'70': panda
'71': pigeon
'72': pizza
'73': platypus
'74': pyramid
'75': revolver
'76': rhino
'77': rooster
'78': saxophone
'79': schooner
'80': scissors
'81': scorpion
'82': sea_horse
'83': snoopy
'84': soccer_ball
'85': stapler
'86': starfish
'87': stegosaurus
'88': stop_sign
'89': strawberry
'90': sunflower
'91': tick
'92': trilobite
'93': umbrella
'94': watch
'95': water_lilly
'96': wheelchair
'97': wild_cat
'98': windsor_chair
'99': wrench
'100': yin_yang
- name: data
dtype: binary
splits:
- name: train
num_bytes: 872272607
num_examples: 8677
download_size: 344357976
dataset_size: 872272607
- config_name: I2E-Caltech256
features:
- name: file_path
dtype: string
- name: label
dtype:
class_label:
names:
'0': 001.ak47
'1': 002.american-flag
'2': 003.backpack
'3': 004.baseball-bat
'4': 005.baseball-glove
'5': 006.basketball-hoop
'6': 007.bat
'7': 008.bathtub
'8': 009.bear
'9': 010.beer-mug
'10': 011.billiards
'11': 012.binoculars
'12': 013.birdbath
'13': 014.blimp
'14': 015.bonsai-101
'15': 016.boom-box
'16': 017.bowling-ball
'17': 018.bowling-pin
'18': 019.boxing-glove
'19': 020.brain-101
'20': 021.breadmaker
'21': 022.buddha-101
'22': 023.bulldozer
'23': 024.butterfly
'24': 025.cactus
'25': 026.cake
'26': 027.calculator
'27': 028.camel
'28': 029.cannon
'29': 030.canoe
'30': 031.car-tire
'31': 032.cartman
'32': 033.cd
'33': 034.centipede
'34': 035.cereal-box
'35': 036.chandelier-101
'36': 037.chess-board
'37': 038.chimp
'38': 039.chopsticks
'39': 040.cockroach
'40': 041.coffee-mug
'41': 042.coffin
'42': 043.coin
'43': 044.comet
'44': 045.computer-keyboard
'45': 046.computer-monitor
'46': 047.computer-mouse
'47': 048.conch
'48': 049.cormorant
'49': 050.covered-wagon
'50': 051.cowboy-hat
'51': 052.crab-101
'52': 053.desk-globe
'53': 054.diamond-ring
'54': 055.dice
'55': 056.dog
'56': 057.dolphin-101
'57': 058.doorknob
'58': 059.drinking-straw
'59': 060.duck
'60': 061.dumb-bell
'61': 062.eiffel-tower
'62': 063.electric-guitar-101
'63': 064.elephant-101
'64': 065.elk
'65': 066.ewer-101
'66': 067.eyeglasses
'67': 068.fern
'68': 069.fighter-jet
'69': 070.fire-extinguisher
'70': 071.fire-hydrant
'71': 072.fire-truck
'72': 073.fireworks
'73': 074.flashlight
'74': 075.floppy-disk
'75': 076.football-helmet
'76': 077.french-horn
'77': 078.fried-egg
'78': 079.frisbee
'79': 080.frog
'80': 081.frying-pan
'81': 082.galaxy
'82': 083.gas-pump
'83': 084.giraffe
'84': 085.goat
'85': 086.golden-gate-bridge
'86': 087.goldfish
'87': 088.golf-ball
'88': 089.goose
'89': 090.gorilla
'90': 091.grand-piano-101
'91': 092.grapes
'92': 093.grasshopper
'93': 094.guitar-pick
'94': 095.hamburger
'95': 096.hammock
'96': 097.harmonica
'97': 098.harp
'98': 099.harpsichord
'99': 100.hawksbill-101
'100': 101.head-phones
'101': 102.helicopter-101
'102': 103.hibiscus
'103': 104.homer-simpson
'104': 105.horse
'105': 106.horseshoe-crab
'106': 107.hot-air-balloon
'107': 108.hot-dog
'108': 109.hot-tub
'109': 110.hourglass
'110': 111.house-fly
'111': 112.human-skeleton
'112': 113.hummingbird
'113': 114.ibis-101
'114': 115.ice-cream-cone
'115': 116.iguana
'116': 117.ipod
'117': 118.iris
'118': 119.jesus-christ
'119': 120.joy-stick
'120': 121.kangaroo-101
'121': 122.kayak
'122': 123.ketch-101
'123': 124.killer-whale
'124': 125.knife
'125': 126.ladder
'126': 127.laptop-101
'127': 128.lathe
'128': 129.leopards-101
'129': 130.license-plate
'130': 131.lightbulb
'131': 132.light-house
'132': 133.lightning
'133': 134.llama-101
'134': 135.mailbox
'135': 136.mandolin
'136': 137.mars
'137': 138.mattress
'138': 139.megaphone
'139': 140.menorah-101
'140': 141.microscope
'141': 142.microwave
'142': 143.minaret
'143': 144.minotaur
'144': 145.motorbikes-101
'145': 146.mountain-bike
'146': 147.mushroom
'147': 148.mussels
'148': 149.necktie
'149': 150.octopus
'150': 151.ostrich
'151': 152.owl
'152': 153.palm-pilot
'153': 154.palm-tree
'154': 155.paperclip
'155': 156.paper-shredder
'156': 157.pci-card
'157': 158.penguin
'158': 159.people
'159': 160.pez-dispenser
'160': 161.photocopier
'161': 162.picnic-table
'162': 163.playing-card
'163': 164.porcupine
'164': 165.pram
'165': 166.praying-mantis
'166': 167.pyramid
'167': 168.raccoon
'168': 169.radio-telescope
'169': 170.rainbow
'170': 171.refrigerator
'171': 172.revolver-101
'172': 173.rifle
'173': 174.rotary-phone
'174': 175.roulette-wheel
'175': 176.saddle
'176': 177.saturn
'177': 178.school-bus
'178': 179.scorpion-101
'179': 180.screwdriver
'180': 181.segway
'181': 182.self-propelled-lawn-mower
'182': 183.sextant
'183': 184.sheet-music
'184': 185.skateboard
'185': 186.skunk
'186': 187.skyscraper
'187': 188.smokestack
'188': 189.snail
'189': 190.snake
'190': 191.sneaker
'191': 192.snowmobile
'192': 193.soccer-ball
'193': 194.socks
'194': 195.soda-can
'195': 196.spaghetti
'196': 197.speed-boat
'197': 198.spider
'198': 199.spoon
'199': 200.stained-glass
'200': 201.starfish-101
'201': 202.steering-wheel
'202': 203.stirrups
'203': 204.sunflower-101
'204': 205.superman
'205': 206.sushi
'206': 207.swan
'207': 208.swiss-army-knife
'208': 209.sword
'209': 210.syringe
'210': 211.tambourine
'211': 212.teapot
'212': 213.teddy-bear
'213': 214.teepee
'214': 215.telephone-box
'215': 216.tennis-ball
'216': 217.tennis-court
'217': 218.tennis-racket
'218': 219.theodolite
'219': 220.toaster
'220': 221.tomato
'221': 222.tombstone
'222': 223.top-hat
'223': 224.touring-bike
'224': 225.tower-pisa
'225': 226.traffic-light
'226': 227.treadmill
'227': 228.triceratops
'228': 229.tricycle
'229': 230.trilobite-101
'230': 231.tripod
'231': 232.t-shirt
'232': 233.tuning-fork
'233': 234.tweezer
'234': 235.umbrella-101
'235': 236.unicorn
'236': 237.vcr
'237': 238.video-projector
'238': 239.washing-machine
'239': 240.watch-101
'240': 241.waterfall
'241': 242.watermelon
'242': 243.welding-mask
'243': 244.wheelbarrow
'244': 245.windmill
'245': 246.wine-bottle
'246': 247.xylophone
'247': 248.yarmulke
'248': 249.yo-yo
'249': 250.zebra
'250': 251.airplanes-101
'251': 252.car-side-101
'252': 253.faces-easy-101
'253': 254.greyhound
'254': 255.tennis-shoes
'255': 256.toad
'256': 257.clutter
- name: data
dtype: binary
splits:
- name: train
num_bytes: 3076928106
num_examples: 30607
download_size: 1165568633
dataset_size: 3076928106
- config_name: I2E-FashionMNIST
features:
- name: file_path
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
'2': '2'
'3': '3'
'4': '4'
'5': '5'
'6': '6'
'7': '7'
'8': '8'
'9': '9'
- name: data
dtype: binary
splits:
- name: train
num_bytes: 132648890
num_examples: 60000
- name: validation
num_bytes: 22098890
num_examples: 10000
download_size: 68196022
dataset_size: 154747780
- config_name: I2E-ImageNet
features:
- name: file_path
dtype: string
- name: label
dtype:
class_label:
names:
'0': n01440764
'1': n01443537
'2': n01484850
'3': n01491361
'4': n01494475
'5': n01496331
'6': n01498041
'7': n01514668
'8': n01514859
'9': n01518878
'10': n01530575
'11': n01531178
'12': n01532829
'13': n01534433
'14': n01537544
'15': n01558993
'16': n01560419
'17': n01580077
'18': n01582220
'19': n01592084
'20': n01601694
'21': n01608432
'22': n01614925
'23': n01616318
'24': n01622779
'25': n01629819
'26': n01630670
'27': n01631663
'28': n01632458
'29': n01632777
'30': n01641577
'31': n01644373
'32': n01644900
'33': n01664065
'34': n01665541
'35': n01667114
'36': n01667778
'37': n01669191
'38': n01675722
'39': n01677366
'40': n01682714
'41': n01685808
'42': n01687978
'43': n01688243
'44': n01689811
'45': n01692333
'46': n01693334
'47': n01694178
'48': n01695060
'49': n01697457
'50': n01698640
'51': n01704323
'52': n01728572
'53': n01728920
'54': n01729322
'55': n01729977
'56': n01734418
'57': n01735189
'58': n01737021
'59': n01739381
'60': n01740131
'61': n01742172
'62': n01744401
'63': n01748264
'64': n01749939
'65': n01751748
'66': n01753488
'67': n01755581
'68': n01756291
'69': n01768244
'70': n01770081
'71': n01770393
'72': n01773157
'73': n01773549
'74': n01773797
'75': n01774384
'76': n01774750
'77': n01775062
'78': n01776313
'79': n01784675
'80': n01795545
'81': n01796340
'82': n01797886
'83': n01798484
'84': n01806143
'85': n01806567
'86': n01807496
'87': n01817953
'88': n01818515
'89': n01819313
'90': n01820546
'91': n01824575
'92': n01828970
'93': n01829413
'94': n01833805
'95': n01843065
'96': n01843383
'97': n01847000
'98': n01855032
'99': n01855672
'100': n01860187
'101': n01871265
'102': n01872401
'103': n01873310
'104': n01877812
'105': n01882714
'106': n01883070
'107': n01910747
'108': n01914609
'109': n01917289
'110': n01924916
'111': n01930112
'112': n01943899
'113': n01944390
'114': n01945685
'115': n01950731
'116': n01955084
'117': n01968897
'118': n01978287
'119': n01978455
'120': n01980166
'121': n01981276
'122': n01983481
'123': n01984695
'124': n01985128
'125': n01986214
'126': n01990800
'127': n02002556
'128': n02002724
'129': n02006656
'130': n02007558
'131': n02009229
'132': n02009912
'133': n02011460
'134': n02012849
'135': n02013706
'136': n02017213
'137': n02018207
'138': n02018795
'139': n02025239
'140': n02027492
'141': n02028035
'142': n02033041
'143': n02037110
'144': n02051845
'145': n02056570
'146': n02058221
'147': n02066245
'148': n02071294
'149': n02074367
'150': n02077923
'151': n02085620
'152': n02085782
'153': n02085936
'154': n02086079
'155': n02086240
'156': n02086646
'157': n02086910
'158': n02087046
'159': n02087394
'160': n02088094
'161': n02088238
'162': n02088364
'163': n02088466
'164': n02088632
'165': n02089078
'166': n02089867
'167': n02089973
'168': n02090379
'169': n02090622
'170': n02090721
'171': n02091032
'172': n02091134
'173': n02091244
'174': n02091467
'175': n02091635
'176': n02091831
'177': n02092002
'178': n02092339
'179': n02093256
'180': n02093428
'181': n02093647
'182': n02093754
'183': n02093859
'184': n02093991
'185': n02094114
'186': n02094258
'187': n02094433
'188': n02095314
'189': n02095570
'190': n02095889
'191': n02096051
'192': n02096177
'193': n02096294
'194': n02096437
'195': n02096585
'196': n02097047
'197': n02097130
'198': n02097209
'199': n02097298
'200': n02097474
'201': n02097658
'202': n02098105
'203': n02098286
'204': n02098413
'205': n02099267
'206': n02099429
'207': n02099601
'208': n02099712
'209': n02099849
'210': n02100236
'211': n02100583
'212': n02100735
'213': n02100877
'214': n02101006
'215': n02101388
'216': n02101556
'217': n02102040
'218': n02102177
'219': n02102318
'220': n02102480
'221': n02102973
'222': n02104029
'223': n02104365
'224': n02105056
'225': n02105162
'226': n02105251
'227': n02105412
'228': n02105505
'229': n02105641
'230': n02105855
'231': n02106030
'232': n02106166
'233': n02106382
'234': n02106550
'235': n02106662
'236': n02107142
'237': n02107312
'238': n02107574
'239': n02107683
'240': n02107908
'241': n02108000
'242': n02108089
'243': n02108422
'244': n02108551
'245': n02108915
'246': n02109047
'247': n02109525
'248': n02109961
'249': n02110063
'250': n02110185
'251': n02110341
'252': n02110627
'253': n02110806
'254': n02110958
'255': n02111129
'256': n02111277
'257': n02111500
'258': n02111889
'259': n02112018
'260': n02112137
'261': n02112350
'262': n02112706
'263': n02113023
'264': n02113186
'265': n02113624
'266': n02113712
'267': n02113799
'268': n02113978
'269': n02114367
'270': n02114548
'271': n02114712
'272': n02114855
'273': n02115641
'274': n02115913
'275': n02116738
'276': n02117135
'277': n02119022
'278': n02119789
'279': n02120079
'280': n02120505
'281': n02123045
'282': n02123159
'283': n02123394
'284': n02123597
'285': n02124075
'286': n02125311
'287': n02127052
'288': n02128385
'289': n02128757
'290': n02128925
'291': n02129165
'292': n02129604
'293': n02130308
'294': n02132136
'295': n02133161
'296': n02134084
'297': n02134418
'298': n02137549
'299': n02138441
'300': n02165105
'301': n02165456
'302': n02167151
'303': n02168699
'304': n02169497
'305': n02172182
'306': n02174001
'307': n02177972
'308': n02190166
'309': n02206856
'310': n02219486
'311': n02226429
'312': n02229544
'313': n02231487
'314': n02233338
'315': n02236044
'316': n02256656
'317': n02259212
'318': n02264363
'319': n02268443
'320': n02268853
'321': n02276258
'322': n02277742
'323': n02279972
'324': n02280649
'325': n02281406
'326': n02281787
'327': n02317335
'328': n02319095
'329': n02321529
'330': n02325366
'331': n02326432
'332': n02328150
'333': n02342885
'334': n02346627
'335': n02356798
'336': n02361337
'337': n02363005
'338': n02364673
'339': n02389026
'340': n02391049
'341': n02395406
'342': n02396427
'343': n02397096
'344': n02398521
'345': n02403003
'346': n02408429
'347': n02410509
'348': n02412080
'349': n02415577
'350': n02417914
'351': n02422106
'352': n02422699
'353': n02423022
'354': n02437312
'355': n02437616
'356': n02441942
'357': n02442845
'358': n02443114
'359': n02443484
'360': n02444819
'361': n02445715
'362': n02447366
'363': n02454379
'364': n02457408
'365': n02480495
'366': n02480855
'367': n02481823
'368': n02483362
'369': n02483708
'370': n02484975
'371': n02486261
'372': n02486410
'373': n02487347
'374': n02488291
'375': n02488702
'376': n02489166
'377': n02490219
'378': n02492035
'379': n02492660
'380': n02493509
'381': n02493793
'382': n02494079
'383': n02497673
'384': n02500267
'385': n02504013
'386': n02504458
'387': n02509815
'388': n02510455
'389': n02514041
'390': n02526121
'391': n02536864
'392': n02606052
'393': n02607072
'394': n02640242
'395': n02641379
'396': n02643566
'397': n02655020
'398': n02666196
'399': n02667093
'400': n02669723
'401': n02672831
'402': n02676566
'403': n02687172
'404': n02690373
'405': n02692877
'406': n02699494
'407': n02701002
'408': n02704792
'409': n02708093
'410': n02727426
'411': n02730930
'412': n02747177
'413': n02749479
'414': n02769748
'415': n02776631
'416': n02777292
'417': n02782093
'418': n02783161
'419': n02786058
'420': n02787622
'421': n02788148
'422': n02790996
'423': n02791124
'424': n02791270
'425': n02793495
'426': n02794156
'427': n02795169
'428': n02797295
'429': n02799071
'430': n02802426
'431': n02804414
'432': n02804610
'433': n02807133
'434': n02808304
'435': n02808440
'436': n02814533
'437': n02814860
'438': n02815834
'439': n02817516
'440': n02823428
'441': n02823750
'442': n02825657
'443': n02834397
'444': n02835271
'445': n02837789
'446': n02840245
'447': n02841315
'448': n02843684
'449': n02859443
'450': n02860847
'451': n02865351
'452': n02869837
'453': n02870880
'454': n02871525
'455': n02877765
'456': n02879718
'457': n02883205
'458': n02892201
'459': n02892767
'460': n02894605
'461': n02895154
'462': n02906734
'463': n02909870
'464': n02910353
'465': n02916936
'466': n02917067
'467': n02927161
'468': n02930766
'469': n02939185
'470': n02948072
'471': n02950826
'472': n02951358
'473': n02951585
'474': n02963159
'475': n02965783
'476': n02966193
'477': n02966687
'478': n02971356
'479': n02974003
'480': n02977058
'481': n02978881
'482': n02979186
'483': n02980441
'484': n02981792
'485': n02988304
'486': n02992211
'487': n02992529
'488': n02999410
'489': n03000134
'490': n03000247
'491': n03000684
'492': n03014705
'493': n03016953
'494': n03017168
'495': n03018349
'496': n03026506
'497': n03028079
'498': n03032252
'499': n03041632
'500': n03042490
'501': n03045698
'502': n03047690
'503': n03062245
'504': n03063599
'505': n03063689
'506': n03065424
'507': n03075370
'508': n03085013
'509': n03089624
'510': n03095699
'511': n03100240
'512': n03109150
'513': n03110669
'514': n03124043
'515': n03124170
'516': n03125729
'517': n03126707
'518': n03127747
'519': n03127925
'520': n03131574
'521': n03133878
'522': n03134739
'523': n03141823
'524': n03146219
'525': n03160309
'526': n03179701
'527': n03180011
'528': n03187595
'529': n03188531
'530': n03196217
'531': n03197337
'532': n03201208
'533': n03207743
'534': n03207941
'535': n03208938
'536': n03216828
'537': n03218198
'538': n03220513
'539': n03223299
'540': n03240683
'541': n03249569
'542': n03250847
'543': n03255030
'544': n03259280
'545': n03271574
'546': n03272010
'547': n03272562
'548': n03290653
'549': n03291819
'550': n03297495
'551': n03314780
'552': n03325584
'553': n03337140
'554': n03344393
'555': n03345487
'556': n03347037
'557': n03355925
'558': n03372029
'559': n03376595
'560': n03379051
'561': n03384352
'562': n03388043
'563': n03388183
'564': n03388549
'565': n03393912
'566': n03394916
'567': n03400231
'568': n03404251
'569': n03417042
'570': n03424325
'571': n03425413
'572': n03443371
'573': n03444034
'574': n03445777
'575': n03445924
'576': n03447447
'577': n03447721
'578': n03450230
'579': n03452741
'580': n03457902
'581': n03459775
'582': n03461385
'583': n03467068
'584': n03476684
'585': n03476991
'586': n03478589
'587': n03481172
'588': n03482405
'589': n03483316
'590': n03485407
'591': n03485794
'592': n03492542
'593': n03494278
'594': n03495258
'595': n03496892
'596': n03498962
'597': n03527444
'598': n03529860
'599': n03530642
'600': n03532672
'601': n03534580
'602': n03535780
'603': n03538406
'604': n03544143
'605': n03584254
'606': n03584829
'607': n03590841
'608': n03594734
'609': n03594945
'610': n03595614
'611': n03598930
'612': n03599486
'613': n03602883
'614': n03617480
'615': n03623198
'616': n03627232
'617': n03630383
'618': n03633091
'619': n03637318
'620': n03642806
'621': n03649909
'622': n03657121
'623': n03658185
'624': n03661043
'625': n03662601
'626': n03666591
'627': n03670208
'628': n03673027
'629': n03676483
'630': n03680355
'631': n03690938
'632': n03691459
'633': n03692522
'634': n03697007
'635': n03706229
'636': n03709823
'637': n03710193
'638': n03710637
'639': n03710721
'640': n03717622
'641': n03720891
'642': n03721384
'643': n03724870
'644': n03729826
'645': n03733131
'646': n03733281
'647': n03733805
'648': n03742115
'649': n03743016
'650': n03759954
'651': n03761084
'652': n03763968
'653': n03764736
'654': n03769881
'655': n03770439
'656': n03770679
'657': n03773504
'658': n03775071
'659': n03775546
'660': n03776460
'661': n03777568
'662': n03777754
'663': n03781244
'664': n03782006
'665': n03785016
'666': n03786901
'667': n03787032
'668': n03788195
'669': n03788365
'670': n03791053
'671': n03792782
'672': n03792972
'673': n03793489
'674': n03794056
'675': n03796401
'676': n03803284
'677': n03804744
'678': n03814639
'679': n03814906
'680': n03825788
'681': n03832673
'682': n03837869
'683': n03838899
'684': n03840681
'685': n03841143
'686': n03843555
'687': n03854065
'688': n03857828
'689': n03866082
'690': n03868242
'691': n03868863
'692': n03871628
'693': n03873416
'694': n03874293
'695': n03874599
'696': n03876231
'697': n03877472
'698': n03877845
'699': n03884397
'700': n03887697
'701': n03888257
'702': n03888605
'703': n03891251
'704': n03891332
'705': n03895866
'706': n03899768
'707': n03902125
'708': n03903868
'709': n03908618
'710': n03908714
'711': n03916031
'712': n03920288
'713': n03924679
'714': n03929660
'715': n03929855
'716': n03930313
'717': n03930630
'718': n03933933
'719': n03935335
'720': n03937543
'721': n03938244
'722': n03942813
'723': n03944341
'724': n03947888
'725': n03950228
'726': n03954731
'727': n03956157
'728': n03958227
'729': n03961711
'730': n03967562
'731': n03970156
'732': n03976467
'733': n03976657
'734': n03977966
'735': n03980874
'736': n03982430
'737': n03983396
'738': n03991062
'739': n03992509
'740': n03995372
'741': n03998194
'742': n04004767
'743': n04005630
'744': n04008634
'745': n04009552
'746': n04019541
'747': n04023962
'748': n04026417
'749': n04033901
'750': n04033995
'751': n04037443
'752': n04039381
'753': n04040759
'754': n04041544
'755': n04044716
'756': n04049303
'757': n04065272
'758': n04067472
'759': n04069434
'760': n04070727
'761': n04074963
'762': n04081281
'763': n04086273
'764': n04090263
'765': n04099969
'766': n04111531
'767': n04116512
'768': n04118538
'769': n04118776
'770': n04120489
'771': n04125021
'772': n04127249
'773': n04131690
'774': n04133789
'775': n04136333
'776': n04141076
'777': n04141327
'778': n04141975
'779': n04146614
'780': n04147183
'781': n04149813
'782': n04152593
'783': n04153751
'784': n04154565
'785': n04162706
'786': n04179913
'787': n04192698
'788': n04200800
'789': n04201297
'790': n04204238
'791': n04204347
'792': n04208210
'793': n04209133
'794': n04209239
'795': n04228054
'796': n04229816
'797': n04235860
'798': n04238763
'799': n04239074
'800': n04243546
'801': n04251144
'802': n04252077
'803': n04252225
'804': n04254120
'805': n04254680
'806': n04254777
'807': n04258138
'808': n04259630
'809': n04263257
'810': n04264628
'811': n04265275
'812': n04266014
'813': n04270147
'814': n04273569
'815': n04275548
'816': n04277352
'817': n04285008
'818': n04286575
'819': n04296562
'820': n04310018
'821': n04311004
'822': n04311174
'823': n04317175
'824': n04325704
'825': n04326547
'826': n04328186
'827': n04330267
'828': n04332243
'829': n04335435
'830': n04336792
'831': n04344873
'832': n04346328
'833': n04347754
'834': n04350905
'835': n04355338
'836': n04355933
'837': n04356056
'838': n04357314
'839': n04366367
'840': n04367480
'841': n04370456
'842': n04371430
'843': n04371774
'844': n04372370
'845': n04376876
'846': n04380533
'847': n04389033
'848': n04392985
'849': n04398044
'850': n04399382
'851': n04404412
'852': n04409515
'853': n04417672
'854': n04418357
'855': n04423845
'856': n04428191
'857': n04429376
'858': n04435653
'859': n04442312
'860': n04443257
'861': n04447861
'862': n04456115
'863': n04458633
'864': n04461696
'865': n04462240
'866': n04465501
'867': n04467665
'868': n04476259
'869': n04479046
'870': n04482393
'871': n04483307
'872': n04485082
'873': n04486054
'874': n04487081
'875': n04487394
'876': n04493381
'877': n04501370
'878': n04505470
'879': n04507155
'880': n04509417
'881': n04515003
'882': n04517823
'883': n04522168
'884': n04523525
'885': n04525038
'886': n04525305
'887': n04532106
'888': n04532670
'889': n04536866
'890': n04540053
'891': n04542943
'892': n04548280
'893': n04548362
'894': n04550184
'895': n04552348
'896': n04553703
'897': n04554684
'898': n04557648
'899': n04560804
'900': n04562935
'901': n04579145
'902': n04579432
'903': n04584207
'904': n04589890
'905': n04590129
'906': n04591157
'907': n04591713
'908': n04592741
'909': n04596742
'910': n04597913
'911': n04599235
'912': n04604644
'913': n04606251
'914': n04612504
'915': n04613696
'916': n06359193
'917': n06596364
'918': n06785654
'919': n06794110
'920': n06874185
'921': n07248320
'922': n07565083
'923': n07579787
'924': n07583066
'925': n07584110
'926': n07590611
'927': n07613480
'928': n07614500
'929': n07615774
'930': n07684084
'931': n07693725
'932': n07695742
'933': n07697313
'934': n07697537
'935': n07711569
'936': n07714571
'937': n07714990
'938': n07715103
'939': n07716358
'940': n07716906
'941': n07717410
'942': n07717556
'943': n07718472
'944': n07718747
'945': n07720875
'946': n07730033
'947': n07734744
'948': n07742313
'949': n07745940
'950': n07747607
'951': n07749582
'952': n07753113
'953': n07753275
'954': n07753592
'955': n07754684
'956': n07760859
'957': n07768694
'958': n07802026
'959': n07831146
'960': n07836838
'961': n07860988
'962': n07871810
'963': n07873807
'964': n07875152
'965': n07880968
'966': n07892512
'967': n07920052
'968': n07930864
'969': n07932039
'970': n09193705
'971': n09229709
'972': n09246464
'973': n09256479
'974': n09288635
'975': n09332890
'976': n09399592
'977': n09421951
'978': n09428293
'979': n09468604
'980': n09472597
'981': n09835506
'982': n10148035
'983': n10565667
'984': n11879895
'985': n11939491
'986': n12057211
'987': n12144580
'988': n12267677
'989': n12620546
'990': n12768682
'991': n12985857
'992': n12998815
'993': n13037406
'994': n13040303
'995': n13044778
'996': n13052670
'997': n13054560
'998': n13133613
'999': n15075141
- name: data
dtype: binary
splits:
- name: train
num_bytes: 128798692994
num_examples: 1281167
- name: validation
num_bytes: 5027050000
num_examples: 50000
download_size: 57961329620
dataset_size: 133825742994
- config_name: I2E-MNIST
features:
- name: file_path
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
'2': '2'
'3': '3'
'4': '4'
'5': '5'
'6': '6'
'7': '7'
'8': '8'
'9': '9'
- name: data
dtype: binary
splits:
- name: train
num_bytes: 132648890
num_examples: 60000
- name: validation
num_bytes: 22098890
num_examples: 10000
download_size: 60473109
dataset_size: 154747780
- config_name: I2E-Mini-ImageNet
features:
- name: file_path
dtype: string
- name: label
dtype:
class_label:
names:
'0': n01532829
'1': n01558993
'2': n01704323
'3': n01749939
'4': n01770081
'5': n01843383
'6': n01855672
'7': n01910747
'8': n01930112
'9': n01981276
'10': n02074367
'11': n02089867
'12': n02091244
'13': n02091831
'14': n02099601
'15': n02101006
'16': n02105505
'17': n02108089
'18': n02108551
'19': n02108915
'20': n02110063
'21': n02110341
'22': n02111277
'23': n02113712
'24': n02114548
'25': n02116738
'26': n02120079
'27': n02129165
'28': n02138441
'29': n02165456
'30': n02174001
'31': n02219486
'32': n02443484
'33': n02457408
'34': n02606052
'35': n02687172
'36': n02747177
'37': n02795169
'38': n02823428
'39': n02871525
'40': n02950826
'41': n02966193
'42': n02971356
'43': n02981792
'44': n03017168
'45': n03047690
'46': n03062245
'47': n03075370
'48': n03127925
'49': n03146219
'50': n03207743
'51': n03220513
'52': n03272010
'53': n03337140
'54': n03347037
'55': n03400231
'56': n03417042
'57': n03476684
'58': n03527444
'59': n03535780
'60': n03544143
'61': n03584254
'62': n03676483
'63': n03770439
'64': n03773504
'65': n03775546
'66': n03838899
'67': n03854065
'68': n03888605
'69': n03908618
'70': n03924679
'71': n03980874
'72': n03998194
'73': n04067472
'74': n04146614
'75': n04149813
'76': n04243546
'77': n04251144
'78': n04258138
'79': n04275548
'80': n04296562
'81': n04389033
'82': n04418357
'83': n04435653
'84': n04443257
'85': n04509417
'86': n04515003
'87': n04522168
'88': n04596742
'89': n04604644
'90': n04612504
'91': n06794110
'92': n07584110
'93': n07613480
'94': n07697537
'95': n07747607
'96': n09246464
'97': n09256479
'98': n13054560
'99': n13133613
- name: data
dtype: binary
splits:
- name: train
num_bytes: 6031941884
num_examples: 60000
download_size: 2568434568
dataset_size: 6031941884
configs:
- config_name: I2E-CIFAR10
data_files:
- split: train
path: I2E-CIFAR10/train-*
- split: validation
path: I2E-CIFAR10/validation-*
- config_name: I2E-CIFAR100
data_files:
- split: train
path: I2E-CIFAR100/train-*
- split: validation
path: I2E-CIFAR100/validation-*
- config_name: I2E-Caltech101
data_files:
- split: train
path: I2E-Caltech101/train-*
- config_name: I2E-Caltech256
data_files:
- split: train
path: I2E-Caltech256/train-*
- config_name: I2E-FashionMNIST
data_files:
- split: train
path: I2E-FashionMNIST/train-*
- split: validation
path: I2E-FashionMNIST/validation-*
- config_name: I2E-ImageNet
data_files:
- split: train
path: I2E-ImageNet/train-*
- split: validation
path: I2E-ImageNet/validation-*
- config_name: I2E-MNIST
data_files:
- split: train
path: I2E-MNIST/train-*
- split: validation
path: I2E-MNIST/validation-*
- config_name: I2E-Mini-ImageNet
data_files:
- split: train
path: I2E-Mini-ImageNet/train-*
license: mit
task_categories:
- image-classification
- video-classification
tags:
- neuromorphic
- snn
- spiking neural networks
- event
- dvs
- biology
- pytorch
- imagenet
- cifar10
- cifar100
- caltech101
- caltech256
- mnist
- fashionmnist
- mini-imagenet
pretty_name: I2E Neuromorphic Dataset
language:
- en
---
<div align="center">
<h1>I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks</h1>
[![Paper](https://img.shields.io/badge/Arxiv-2511.08065-B31B1B.svg)](https://arxiv.org/abs/2511.08065)
[![AAAI 2026](https://img.shields.io/badge/AAAI%202026-Oral-4b44ce.svg)](https://aaai.org/)
[![Google Scholar](https://img.shields.io/badge/Google%20Scholar-Paper-4285F4?style=flat-square&logo=google-scholar&logoColor=white)](https://scholar.google.com/scholar?cluster=1814482600796011970)
[![GitHub](https://img.shields.io/badge/GitHub-Repository-black?logo=github)](https://github.com/Ruichen0424/I2E)
[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Paper-FFD21E?style=flat-square&logo=huggingface&logoColor=black)](https://huggingface.co/papers/2511.08065)
[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Models-FFD21E?style=flat-square&logo=huggingface&logoColor=black)](https://huggingface.co/Ruichen0424/I2E)
</div>
## πŸš€ Introduction
This repository hosts the **I2E-Datasets**, a comprehensive suite of neuromorphic datasets generated using the **I2E (Image-to-Event)** framework. This work has been accepted for **Oral Presentation at AAAI 2026**.
**I2E** bridges the data scarcity gap in **Neuromorphic Computing** and **Spiking Neural Networks (SNNs)**. By simulating microsaccadic eye movements via highly parallelized convolution, I2E converts static images into high-fidelity event streams in real-time (>300x faster than prior methods).
## πŸ‘οΈ Visualization
The following comparisons illustrate the high-fidelity conversion from static RGB images to dynamic event streams using I2E.
<table border="0" style="width: 100%">
<tr>
<td width="25%" align="center"><img src="./assets/original_1.jpg" alt="Original 1" style="width:100%"></td>
<td width="25%" align="center"><img src="./assets/converted_1.gif" alt="Converted 1" style="width:100%"></td>
<td width="25%" align="center"><img src="./assets/original_2.jpg" alt="Original 2" style="width:100%"></td>
<td width="25%" align="center"><img src="./assets/converted_2.gif" alt="Converted 2" style="width:100%"></td>
</tr>
<tr>
<td width="25%" align="center"><img src="./assets/original_3.jpg" alt="Original 3" style="width:100%"></td>
<td width="25%" align="center"><img src="./assets/converted_3.gif" alt="Converted 3" style="width:100%"></td>
<td width="25%" align="center"><img src="./assets/original_4.jpg" alt="Original 4" style="width:100%"></td>
<td width="25%" align="center"><img src="./assets/converted_4.gif" alt="Converted 4" style="width:100%"></td>
</tr>
</table>
*More visualization comparisons can be found in [Visualization.md](./Visualization.md).*
## πŸ“¦ Dataset Catalog
We provide a comprehensive collection of standard benchmarks converted into event streams via the I2E algorithm.
### 1. Standard Benchmarks (Classification)
| Config Name | Original Source | Resolution $(H, W)$ | I2E Ratio | Event Rate | Samples (Train/Val) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| **`I2E-CIFAR10`** | CIFAR-10 | 128 x 128 | 0.07 | 5.86% | 50k / 10k |
| **`I2E-CIFAR100`** | CIFAR-100 | 128 x 128 | 0.07 | 5.76% | 50k / 10k |
| **`I2E-ImageNet`** | ILSVRC2012 | 224 x 224 | 0.12 | 6.66% | 1.28M / 50k |
### 2. Transfer Learning & Fine-grained
| Config Name | Original Source | Resolution $(H, W)$ | I2E Ratio | Event Rate | Samples |
| :--- | :--- | :--- | :--- | :--- | :--- |
| **`I2E-Caltech101`** | Caltech-101 | 224 x 224 | 0.12 | 6.25% | 8.677k |
| **`I2E-Caltech256`** | Caltech-256 | 224 x 224 | 0.12 | 6.04% | 30.607k |
| **`I2E-Mini-ImageNet`**| Mini-ImageNet | 224 x 224 | 0.12 | 6.65% | 60k |
### 3. Small Scale / Toy
| Config Name | Original Source | Resolution $(H, W)$ | I2E Ratio | Event Rate | Samples |
| :--- | :--- | :--- | :--- | :--- | :--- |
| **`I2E-MNIST`** | MNIST | 32 x 32 | 0.10 | 9.56% | 60k / 10k |
| **`I2E-FashionMNIST`** | Fashion-MNIST | 32 x 32 | 0.15 | 10.76% | 60k / 10k |
> πŸ”œ **Coming Soon:** Object Detection and Semantic Segmentation datasets.
## πŸ› οΈ Preprocessing Protocol
To ensure reproducibility, we specify the exact data augmentation pipeline applied to the static images **before** I2E conversion.
The `(H, W)` in the code below corresponds to the "Resolution" column in the Dataset Catalog above.
```python
from torchvision.transforms import v2
# Standard Pre-processing Pipeline used for I2E generation
transform_train = v2.Compose([
# Ensure 3-channel RGB (crucial for grayscale datasets like MNIST)
v2.Lambda(lambda x: x.convert('RGB')),
v2.PILToTensor(),
v2.Resize((H, W), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToDtype(torch.float32, scale=True),
])
````
## πŸ’» Usage
### πŸš€ Quick Start
You **do not** need to download any extra scripts. Just copy the code below. It handles the binary unpacking (converting Parquet bytes to PyTorch Tensors) automatically.
```python
import io
import torch
import numpy as np
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
# ==================================================================
# 1. Core Decoding Function (Handles the binary packing)
# ==================================================================
def unpack_event_data(item, use_io=True):
"""
Decodes the custom binary format:
Header (8 bytes) -> Shape (T, C, H, W) -> Body (Packed Bits)
"""
if use_io:
with io.BytesIO(item['data']) as f:
raw_data = np.load(f)
else:
raw_data = np.load(item)
header_size = 4 * 2 # Parse Header (First 8 bytes for 4 uint16 shape values)
shape_header = raw_data[:header_size].view(np.uint16)
original_shape = tuple(shape_header) # Returns (T, C, H, W)
packed_body = raw_data[header_size:] # Parse Body & Bit-unpacking
unpacked = np.unpackbits(packed_body)
num_elements = np.prod(original_shape) # Extract valid bits (Handle padding)
event_flat = unpacked[:num_elements]
event_data = event_flat.reshape(original_shape).astype(np.float32).copy()
return torch.from_numpy(event_data)
# ==================================================================
# 2. Dataset Wrapper
# ==================================================================
class I2E_Dataset(Dataset):
def __init__(self, cache_dir, config_name, split='train', transform=None, target_transform=None):
print(f"πŸš€ Loading {config_name} [{split}] from Hugging Face...")
self.ds = load_dataset('UESTC-BICS/I2E', config_name, split=split, cache_dir=cache_dir, keep_in_memory=False)
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.ds)
def __getitem__(self, idx):
item = self.ds[idx]
event = unpack_event_data(item)
label = item['label']
if self.transform:
event = self.transform(event)
if self.target_transform:
label = self.target_transform(label)
return event, label
# ==================================================================
# 3. Run Example
# ==================================================================
if __name__ == "__main__":
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # Use HF mirror server in some regions
DATASET_NAME = 'I2E-CIFAR10' # Choose your config: 'I2E-CIFAR10', 'I2E-ImageNet', etc.
MODEL_PATH = 'Your cache path here' # e.g., './hf_datasets_cache/'
train_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='train')
val_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='validation')
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=32, persistent_workers=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=32, persistent_workers=True)
events, labels = next(iter(train_loader))
print(f"βœ… Loaded Batch Shape: {events.shape}") # Expect: [32, T, 2, H, W]
print(f"βœ… Labels: {labels}")
```
## πŸ† Results (SOTA)
Our I2E-pretraining sets new benchmarks for Sim-to-Real transfer on **CIFAR10-DVS**.
<table border="1">
<tr>
<th>Dataset</th>
<th align="center">Architecture</th>
<th align="center">Method</th>
<th align="center">Top-1 Acc</th>
</tr>
<!-- CIFAR10-DVS -->
<tr>
<td rowspan="3" align="center" style="vertical-align: middle;"><strong>CIFAR10-DVS</strong><br>(Real)</td>
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
<td align="center" style="vertical-align: middle;">Baseline</td>
<td align="center" style="vertical-align: middle;">65.6%</td>
</tr>
<tr>
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
<td align="center" style="vertical-align: middle;">Transfer-I</td>
<td align="center" style="vertical-align: middle;">83.1%</td>
</tr>
<tr>
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
<td align="center" style="vertical-align: middle;">Transfer-II (Sim-to-Real)</td>
<td align="center" style="vertical-align: middle;"><strong>92.5%</strong></td>
</tr>
</table>
*For full results and model weights, please visit our [GitHub Repo](https://github.com/Ruichen0424/I2E).*
[![GitHub](https://img.shields.io/badge/GitHub-Repository-black?logo=github)](https://github.com/Ruichen0424/I2E)
[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Models-FFD21E?style=flat-square&logo=huggingface&logoColor=black)](https://huggingface.co/Ruichen0424/I2E)
## πŸ“œ Citation
If you find this work or the models useful, please cite our AAAI 2026 paper:
```bibtex
@article{ma2025i2e,
title={I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks},
author={Ma, Ruichen and Meng, Liwei and Qiao, Guanchao and Ning, Ning and Liu, Yang and Hu, Shaogang},
journal={arXiv preprint arXiv:2511.08065},
year={2025}
}
```