|
|
--- |
|
|
dataset_info: |
|
|
- config_name: I2E-CIFAR10 |
|
|
features: |
|
|
- name: file_path |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: |
|
|
class_label: |
|
|
names: |
|
|
'0': '0' |
|
|
'1': '1' |
|
|
'2': '2' |
|
|
'3': '3' |
|
|
'4': '4' |
|
|
'5': '5' |
|
|
'6': '6' |
|
|
'7': '7' |
|
|
'8': '8' |
|
|
'9': '9' |
|
|
- name: data |
|
|
dtype: binary |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1646538890 |
|
|
num_examples: 50000 |
|
|
- name: validation |
|
|
num_bytes: 329298890 |
|
|
num_examples: 10000 |
|
|
download_size: 464478602 |
|
|
dataset_size: 1975837780 |
|
|
- config_name: I2E-CIFAR100 |
|
|
features: |
|
|
- name: file_path |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: |
|
|
class_label: |
|
|
names: |
|
|
'0': '0' |
|
|
'1': '1' |
|
|
'2': '2' |
|
|
'3': '3' |
|
|
'4': '4' |
|
|
'5': '5' |
|
|
'6': '6' |
|
|
'7': '7' |
|
|
'8': '8' |
|
|
'9': '9' |
|
|
'10': '10' |
|
|
'11': '11' |
|
|
'12': '12' |
|
|
'13': '13' |
|
|
'14': '14' |
|
|
'15': '15' |
|
|
'16': '16' |
|
|
'17': '17' |
|
|
'18': '18' |
|
|
'19': '19' |
|
|
'20': '20' |
|
|
'21': '21' |
|
|
'22': '22' |
|
|
'23': '23' |
|
|
'24': '24' |
|
|
'25': '25' |
|
|
'26': '26' |
|
|
'27': '27' |
|
|
'28': '28' |
|
|
'29': '29' |
|
|
'30': '30' |
|
|
'31': '31' |
|
|
'32': '32' |
|
|
'33': '33' |
|
|
'34': '34' |
|
|
'35': '35' |
|
|
'36': '36' |
|
|
'37': '37' |
|
|
'38': '38' |
|
|
'39': '39' |
|
|
'40': '40' |
|
|
'41': '41' |
|
|
'42': '42' |
|
|
'43': '43' |
|
|
'44': '44' |
|
|
'45': '45' |
|
|
'46': '46' |
|
|
'47': '47' |
|
|
'48': '48' |
|
|
'49': '49' |
|
|
'50': '50' |
|
|
'51': '51' |
|
|
'52': '52' |
|
|
'53': '53' |
|
|
'54': '54' |
|
|
'55': '55' |
|
|
'56': '56' |
|
|
'57': '57' |
|
|
'58': '58' |
|
|
'59': '59' |
|
|
'60': '60' |
|
|
'61': '61' |
|
|
'62': '62' |
|
|
'63': '63' |
|
|
'64': '64' |
|
|
'65': '65' |
|
|
'66': '66' |
|
|
'67': '67' |
|
|
'68': '68' |
|
|
'69': '69' |
|
|
'70': '70' |
|
|
'71': '71' |
|
|
'72': '72' |
|
|
'73': '73' |
|
|
'74': '74' |
|
|
'75': '75' |
|
|
'76': '76' |
|
|
'77': '77' |
|
|
'78': '78' |
|
|
'79': '79' |
|
|
'80': '80' |
|
|
'81': '81' |
|
|
'82': '82' |
|
|
'83': '83' |
|
|
'84': '84' |
|
|
'85': '85' |
|
|
'86': '86' |
|
|
'87': '87' |
|
|
'88': '88' |
|
|
'89': '89' |
|
|
'90': '90' |
|
|
'91': '91' |
|
|
'92': '92' |
|
|
'93': '93' |
|
|
'94': '94' |
|
|
'95': '95' |
|
|
'96': '96' |
|
|
'97': '97' |
|
|
'98': '98' |
|
|
'99': '99' |
|
|
- name: data |
|
|
dtype: binary |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1646583890 |
|
|
num_examples: 50000 |
|
|
- name: validation |
|
|
num_bytes: 329307890 |
|
|
num_examples: 10000 |
|
|
download_size: 462298257 |
|
|
dataset_size: 1975891780 |
|
|
- config_name: I2E-Caltech101 |
|
|
features: |
|
|
- name: file_path |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: |
|
|
class_label: |
|
|
names: |
|
|
'0': Faces |
|
|
'1': Faces_easy |
|
|
'2': Leopards |
|
|
'3': Motorbikes |
|
|
'4': accordion |
|
|
'5': airplanes |
|
|
'6': anchor |
|
|
'7': ant |
|
|
'8': barrel |
|
|
'9': bass |
|
|
'10': beaver |
|
|
'11': binocular |
|
|
'12': bonsai |
|
|
'13': brain |
|
|
'14': brontosaurus |
|
|
'15': buddha |
|
|
'16': butterfly |
|
|
'17': camera |
|
|
'18': cannon |
|
|
'19': car_side |
|
|
'20': ceiling_fan |
|
|
'21': cellphone |
|
|
'22': chair |
|
|
'23': chandelier |
|
|
'24': cougar_body |
|
|
'25': cougar_face |
|
|
'26': crab |
|
|
'27': crayfish |
|
|
'28': crocodile |
|
|
'29': crocodile_head |
|
|
'30': cup |
|
|
'31': dalmatian |
|
|
'32': dollar_bill |
|
|
'33': dolphin |
|
|
'34': dragonfly |
|
|
'35': electric_guitar |
|
|
'36': elephant |
|
|
'37': emu |
|
|
'38': euphonium |
|
|
'39': ewer |
|
|
'40': ferry |
|
|
'41': flamingo |
|
|
'42': flamingo_head |
|
|
'43': garfield |
|
|
'44': gerenuk |
|
|
'45': gramophone |
|
|
'46': grand_piano |
|
|
'47': hawksbill |
|
|
'48': headphone |
|
|
'49': hedgehog |
|
|
'50': helicopter |
|
|
'51': ibis |
|
|
'52': inline_skate |
|
|
'53': joshua_tree |
|
|
'54': kangaroo |
|
|
'55': ketch |
|
|
'56': lamp |
|
|
'57': laptop |
|
|
'58': llama |
|
|
'59': lobster |
|
|
'60': lotus |
|
|
'61': mandolin |
|
|
'62': mayfly |
|
|
'63': menorah |
|
|
'64': metronome |
|
|
'65': minaret |
|
|
'66': nautilus |
|
|
'67': octopus |
|
|
'68': okapi |
|
|
'69': pagoda |
|
|
'70': panda |
|
|
'71': pigeon |
|
|
'72': pizza |
|
|
'73': platypus |
|
|
'74': pyramid |
|
|
'75': revolver |
|
|
'76': rhino |
|
|
'77': rooster |
|
|
'78': saxophone |
|
|
'79': schooner |
|
|
'80': scissors |
|
|
'81': scorpion |
|
|
'82': sea_horse |
|
|
'83': snoopy |
|
|
'84': soccer_ball |
|
|
'85': stapler |
|
|
'86': starfish |
|
|
'87': stegosaurus |
|
|
'88': stop_sign |
|
|
'89': strawberry |
|
|
'90': sunflower |
|
|
'91': tick |
|
|
'92': trilobite |
|
|
'93': umbrella |
|
|
'94': watch |
|
|
'95': water_lilly |
|
|
'96': wheelchair |
|
|
'97': wild_cat |
|
|
'98': windsor_chair |
|
|
'99': wrench |
|
|
'100': yin_yang |
|
|
- name: data |
|
|
dtype: binary |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 872272607 |
|
|
num_examples: 8677 |
|
|
download_size: 344357976 |
|
|
dataset_size: 872272607 |
|
|
- config_name: I2E-Caltech256 |
|
|
features: |
|
|
- name: file_path |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: |
|
|
class_label: |
|
|
names: |
|
|
'0': 001.ak47 |
|
|
'1': 002.american-flag |
|
|
'2': 003.backpack |
|
|
'3': 004.baseball-bat |
|
|
'4': 005.baseball-glove |
|
|
'5': 006.basketball-hoop |
|
|
'6': 007.bat |
|
|
'7': 008.bathtub |
|
|
'8': 009.bear |
|
|
'9': 010.beer-mug |
|
|
'10': 011.billiards |
|
|
'11': 012.binoculars |
|
|
'12': 013.birdbath |
|
|
'13': 014.blimp |
|
|
'14': 015.bonsai-101 |
|
|
'15': 016.boom-box |
|
|
'16': 017.bowling-ball |
|
|
'17': 018.bowling-pin |
|
|
'18': 019.boxing-glove |
|
|
'19': 020.brain-101 |
|
|
'20': 021.breadmaker |
|
|
'21': 022.buddha-101 |
|
|
'22': 023.bulldozer |
|
|
'23': 024.butterfly |
|
|
'24': 025.cactus |
|
|
'25': 026.cake |
|
|
'26': 027.calculator |
|
|
'27': 028.camel |
|
|
'28': 029.cannon |
|
|
'29': 030.canoe |
|
|
'30': 031.car-tire |
|
|
'31': 032.cartman |
|
|
'32': 033.cd |
|
|
'33': 034.centipede |
|
|
'34': 035.cereal-box |
|
|
'35': 036.chandelier-101 |
|
|
'36': 037.chess-board |
|
|
'37': 038.chimp |
|
|
'38': 039.chopsticks |
|
|
'39': 040.cockroach |
|
|
'40': 041.coffee-mug |
|
|
'41': 042.coffin |
|
|
'42': 043.coin |
|
|
'43': 044.comet |
|
|
'44': 045.computer-keyboard |
|
|
'45': 046.computer-monitor |
|
|
'46': 047.computer-mouse |
|
|
'47': 048.conch |
|
|
'48': 049.cormorant |
|
|
'49': 050.covered-wagon |
|
|
'50': 051.cowboy-hat |
|
|
'51': 052.crab-101 |
|
|
'52': 053.desk-globe |
|
|
'53': 054.diamond-ring |
|
|
'54': 055.dice |
|
|
'55': 056.dog |
|
|
'56': 057.dolphin-101 |
|
|
'57': 058.doorknob |
|
|
'58': 059.drinking-straw |
|
|
'59': 060.duck |
|
|
'60': 061.dumb-bell |
|
|
'61': 062.eiffel-tower |
|
|
'62': 063.electric-guitar-101 |
|
|
'63': 064.elephant-101 |
|
|
'64': 065.elk |
|
|
'65': 066.ewer-101 |
|
|
'66': 067.eyeglasses |
|
|
'67': 068.fern |
|
|
'68': 069.fighter-jet |
|
|
'69': 070.fire-extinguisher |
|
|
'70': 071.fire-hydrant |
|
|
'71': 072.fire-truck |
|
|
'72': 073.fireworks |
|
|
'73': 074.flashlight |
|
|
'74': 075.floppy-disk |
|
|
'75': 076.football-helmet |
|
|
'76': 077.french-horn |
|
|
'77': 078.fried-egg |
|
|
'78': 079.frisbee |
|
|
'79': 080.frog |
|
|
'80': 081.frying-pan |
|
|
'81': 082.galaxy |
|
|
'82': 083.gas-pump |
|
|
'83': 084.giraffe |
|
|
'84': 085.goat |
|
|
'85': 086.golden-gate-bridge |
|
|
'86': 087.goldfish |
|
|
'87': 088.golf-ball |
|
|
'88': 089.goose |
|
|
'89': 090.gorilla |
|
|
'90': 091.grand-piano-101 |
|
|
'91': 092.grapes |
|
|
'92': 093.grasshopper |
|
|
'93': 094.guitar-pick |
|
|
'94': 095.hamburger |
|
|
'95': 096.hammock |
|
|
'96': 097.harmonica |
|
|
'97': 098.harp |
|
|
'98': 099.harpsichord |
|
|
'99': 100.hawksbill-101 |
|
|
'100': 101.head-phones |
|
|
'101': 102.helicopter-101 |
|
|
'102': 103.hibiscus |
|
|
'103': 104.homer-simpson |
|
|
'104': 105.horse |
|
|
'105': 106.horseshoe-crab |
|
|
'106': 107.hot-air-balloon |
|
|
'107': 108.hot-dog |
|
|
'108': 109.hot-tub |
|
|
'109': 110.hourglass |
|
|
'110': 111.house-fly |
|
|
'111': 112.human-skeleton |
|
|
'112': 113.hummingbird |
|
|
'113': 114.ibis-101 |
|
|
'114': 115.ice-cream-cone |
|
|
'115': 116.iguana |
|
|
'116': 117.ipod |
|
|
'117': 118.iris |
|
|
'118': 119.jesus-christ |
|
|
'119': 120.joy-stick |
|
|
'120': 121.kangaroo-101 |
|
|
'121': 122.kayak |
|
|
'122': 123.ketch-101 |
|
|
'123': 124.killer-whale |
|
|
'124': 125.knife |
|
|
'125': 126.ladder |
|
|
'126': 127.laptop-101 |
|
|
'127': 128.lathe |
|
|
'128': 129.leopards-101 |
|
|
'129': 130.license-plate |
|
|
'130': 131.lightbulb |
|
|
'131': 132.light-house |
|
|
'132': 133.lightning |
|
|
'133': 134.llama-101 |
|
|
'134': 135.mailbox |
|
|
'135': 136.mandolin |
|
|
'136': 137.mars |
|
|
'137': 138.mattress |
|
|
'138': 139.megaphone |
|
|
'139': 140.menorah-101 |
|
|
'140': 141.microscope |
|
|
'141': 142.microwave |
|
|
'142': 143.minaret |
|
|
'143': 144.minotaur |
|
|
'144': 145.motorbikes-101 |
|
|
'145': 146.mountain-bike |
|
|
'146': 147.mushroom |
|
|
'147': 148.mussels |
|
|
'148': 149.necktie |
|
|
'149': 150.octopus |
|
|
'150': 151.ostrich |
|
|
'151': 152.owl |
|
|
'152': 153.palm-pilot |
|
|
'153': 154.palm-tree |
|
|
'154': 155.paperclip |
|
|
'155': 156.paper-shredder |
|
|
'156': 157.pci-card |
|
|
'157': 158.penguin |
|
|
'158': 159.people |
|
|
'159': 160.pez-dispenser |
|
|
'160': 161.photocopier |
|
|
'161': 162.picnic-table |
|
|
'162': 163.playing-card |
|
|
'163': 164.porcupine |
|
|
'164': 165.pram |
|
|
'165': 166.praying-mantis |
|
|
'166': 167.pyramid |
|
|
'167': 168.raccoon |
|
|
'168': 169.radio-telescope |
|
|
'169': 170.rainbow |
|
|
'170': 171.refrigerator |
|
|
'171': 172.revolver-101 |
|
|
'172': 173.rifle |
|
|
'173': 174.rotary-phone |
|
|
'174': 175.roulette-wheel |
|
|
'175': 176.saddle |
|
|
'176': 177.saturn |
|
|
'177': 178.school-bus |
|
|
'178': 179.scorpion-101 |
|
|
'179': 180.screwdriver |
|
|
'180': 181.segway |
|
|
'181': 182.self-propelled-lawn-mower |
|
|
'182': 183.sextant |
|
|
'183': 184.sheet-music |
|
|
'184': 185.skateboard |
|
|
'185': 186.skunk |
|
|
'186': 187.skyscraper |
|
|
'187': 188.smokestack |
|
|
'188': 189.snail |
|
|
'189': 190.snake |
|
|
'190': 191.sneaker |
|
|
'191': 192.snowmobile |
|
|
'192': 193.soccer-ball |
|
|
'193': 194.socks |
|
|
'194': 195.soda-can |
|
|
'195': 196.spaghetti |
|
|
'196': 197.speed-boat |
|
|
'197': 198.spider |
|
|
'198': 199.spoon |
|
|
'199': 200.stained-glass |
|
|
'200': 201.starfish-101 |
|
|
'201': 202.steering-wheel |
|
|
'202': 203.stirrups |
|
|
'203': 204.sunflower-101 |
|
|
'204': 205.superman |
|
|
'205': 206.sushi |
|
|
'206': 207.swan |
|
|
'207': 208.swiss-army-knife |
|
|
'208': 209.sword |
|
|
'209': 210.syringe |
|
|
'210': 211.tambourine |
|
|
'211': 212.teapot |
|
|
'212': 213.teddy-bear |
|
|
'213': 214.teepee |
|
|
'214': 215.telephone-box |
|
|
'215': 216.tennis-ball |
|
|
'216': 217.tennis-court |
|
|
'217': 218.tennis-racket |
|
|
'218': 219.theodolite |
|
|
'219': 220.toaster |
|
|
'220': 221.tomato |
|
|
'221': 222.tombstone |
|
|
'222': 223.top-hat |
|
|
'223': 224.touring-bike |
|
|
'224': 225.tower-pisa |
|
|
'225': 226.traffic-light |
|
|
'226': 227.treadmill |
|
|
'227': 228.triceratops |
|
|
'228': 229.tricycle |
|
|
'229': 230.trilobite-101 |
|
|
'230': 231.tripod |
|
|
'231': 232.t-shirt |
|
|
'232': 233.tuning-fork |
|
|
'233': 234.tweezer |
|
|
'234': 235.umbrella-101 |
|
|
'235': 236.unicorn |
|
|
'236': 237.vcr |
|
|
'237': 238.video-projector |
|
|
'238': 239.washing-machine |
|
|
'239': 240.watch-101 |
|
|
'240': 241.waterfall |
|
|
'241': 242.watermelon |
|
|
'242': 243.welding-mask |
|
|
'243': 244.wheelbarrow |
|
|
'244': 245.windmill |
|
|
'245': 246.wine-bottle |
|
|
'246': 247.xylophone |
|
|
'247': 248.yarmulke |
|
|
'248': 249.yo-yo |
|
|
'249': 250.zebra |
|
|
'250': 251.airplanes-101 |
|
|
'251': 252.car-side-101 |
|
|
'252': 253.faces-easy-101 |
|
|
'253': 254.greyhound |
|
|
'254': 255.tennis-shoes |
|
|
'255': 256.toad |
|
|
'256': 257.clutter |
|
|
- name: data |
|
|
dtype: binary |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 3076928106 |
|
|
num_examples: 30607 |
|
|
download_size: 1165568633 |
|
|
dataset_size: 3076928106 |
|
|
- config_name: I2E-FashionMNIST |
|
|
features: |
|
|
- name: file_path |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: |
|
|
class_label: |
|
|
names: |
|
|
'0': '0' |
|
|
'1': '1' |
|
|
'2': '2' |
|
|
'3': '3' |
|
|
'4': '4' |
|
|
'5': '5' |
|
|
'6': '6' |
|
|
'7': '7' |
|
|
'8': '8' |
|
|
'9': '9' |
|
|
- name: data |
|
|
dtype: binary |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 132648890 |
|
|
num_examples: 60000 |
|
|
- name: validation |
|
|
num_bytes: 22098890 |
|
|
num_examples: 10000 |
|
|
download_size: 68196022 |
|
|
dataset_size: 154747780 |
|
|
- config_name: I2E-ImageNet |
|
|
features: |
|
|
- name: file_path |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: |
|
|
class_label: |
|
|
names: |
|
|
'0': n01440764 |
|
|
'1': n01443537 |
|
|
'2': n01484850 |
|
|
'3': n01491361 |
|
|
'4': n01494475 |
|
|
'5': n01496331 |
|
|
'6': n01498041 |
|
|
'7': n01514668 |
|
|
'8': n01514859 |
|
|
'9': n01518878 |
|
|
'10': n01530575 |
|
|
'11': n01531178 |
|
|
'12': n01532829 |
|
|
'13': n01534433 |
|
|
'14': n01537544 |
|
|
'15': n01558993 |
|
|
'16': n01560419 |
|
|
'17': n01580077 |
|
|
'18': n01582220 |
|
|
'19': n01592084 |
|
|
'20': n01601694 |
|
|
'21': n01608432 |
|
|
'22': n01614925 |
|
|
'23': n01616318 |
|
|
'24': n01622779 |
|
|
'25': n01629819 |
|
|
'26': n01630670 |
|
|
'27': n01631663 |
|
|
'28': n01632458 |
|
|
'29': n01632777 |
|
|
'30': n01641577 |
|
|
'31': n01644373 |
|
|
'32': n01644900 |
|
|
'33': n01664065 |
|
|
'34': n01665541 |
|
|
'35': n01667114 |
|
|
'36': n01667778 |
|
|
'37': n01669191 |
|
|
'38': n01675722 |
|
|
'39': n01677366 |
|
|
'40': n01682714 |
|
|
'41': n01685808 |
|
|
'42': n01687978 |
|
|
'43': n01688243 |
|
|
'44': n01689811 |
|
|
'45': n01692333 |
|
|
'46': n01693334 |
|
|
'47': n01694178 |
|
|
'48': n01695060 |
|
|
'49': n01697457 |
|
|
'50': n01698640 |
|
|
'51': n01704323 |
|
|
'52': n01728572 |
|
|
'53': n01728920 |
|
|
'54': n01729322 |
|
|
'55': n01729977 |
|
|
'56': n01734418 |
|
|
'57': n01735189 |
|
|
'58': n01737021 |
|
|
'59': n01739381 |
|
|
'60': n01740131 |
|
|
'61': n01742172 |
|
|
'62': n01744401 |
|
|
'63': n01748264 |
|
|
'64': n01749939 |
|
|
'65': n01751748 |
|
|
'66': n01753488 |
|
|
'67': n01755581 |
|
|
'68': n01756291 |
|
|
'69': n01768244 |
|
|
'70': n01770081 |
|
|
'71': n01770393 |
|
|
'72': n01773157 |
|
|
'73': n01773549 |
|
|
'74': n01773797 |
|
|
'75': n01774384 |
|
|
'76': n01774750 |
|
|
'77': n01775062 |
|
|
'78': n01776313 |
|
|
'79': n01784675 |
|
|
'80': n01795545 |
|
|
'81': n01796340 |
|
|
'82': n01797886 |
|
|
'83': n01798484 |
|
|
'84': n01806143 |
|
|
'85': n01806567 |
|
|
'86': n01807496 |
|
|
'87': n01817953 |
|
|
'88': n01818515 |
|
|
'89': n01819313 |
|
|
'90': n01820546 |
|
|
'91': n01824575 |
|
|
'92': n01828970 |
|
|
'93': n01829413 |
|
|
'94': n01833805 |
|
|
'95': n01843065 |
|
|
'96': n01843383 |
|
|
'97': n01847000 |
|
|
'98': n01855032 |
|
|
'99': n01855672 |
|
|
'100': n01860187 |
|
|
'101': n01871265 |
|
|
'102': n01872401 |
|
|
'103': n01873310 |
|
|
'104': n01877812 |
|
|
'105': n01882714 |
|
|
'106': n01883070 |
|
|
'107': n01910747 |
|
|
'108': n01914609 |
|
|
'109': n01917289 |
|
|
'110': n01924916 |
|
|
'111': n01930112 |
|
|
'112': n01943899 |
|
|
'113': n01944390 |
|
|
'114': n01945685 |
|
|
'115': n01950731 |
|
|
'116': n01955084 |
|
|
'117': n01968897 |
|
|
'118': n01978287 |
|
|
'119': n01978455 |
|
|
'120': n01980166 |
|
|
'121': n01981276 |
|
|
'122': n01983481 |
|
|
'123': n01984695 |
|
|
'124': n01985128 |
|
|
'125': n01986214 |
|
|
'126': n01990800 |
|
|
'127': n02002556 |
|
|
'128': n02002724 |
|
|
'129': n02006656 |
|
|
'130': n02007558 |
|
|
'131': n02009229 |
|
|
'132': n02009912 |
|
|
'133': n02011460 |
|
|
'134': n02012849 |
|
|
'135': n02013706 |
|
|
'136': n02017213 |
|
|
'137': n02018207 |
|
|
'138': n02018795 |
|
|
'139': n02025239 |
|
|
'140': n02027492 |
|
|
'141': n02028035 |
|
|
'142': n02033041 |
|
|
'143': n02037110 |
|
|
'144': n02051845 |
|
|
'145': n02056570 |
|
|
'146': n02058221 |
|
|
'147': n02066245 |
|
|
'148': n02071294 |
|
|
'149': n02074367 |
|
|
'150': n02077923 |
|
|
'151': n02085620 |
|
|
'152': n02085782 |
|
|
'153': n02085936 |
|
|
'154': n02086079 |
|
|
'155': n02086240 |
|
|
'156': n02086646 |
|
|
'157': n02086910 |
|
|
'158': n02087046 |
|
|
'159': n02087394 |
|
|
'160': n02088094 |
|
|
'161': n02088238 |
|
|
'162': n02088364 |
|
|
'163': n02088466 |
|
|
'164': n02088632 |
|
|
'165': n02089078 |
|
|
'166': n02089867 |
|
|
'167': n02089973 |
|
|
'168': n02090379 |
|
|
'169': n02090622 |
|
|
'170': n02090721 |
|
|
'171': n02091032 |
|
|
'172': n02091134 |
|
|
'173': n02091244 |
|
|
'174': n02091467 |
|
|
'175': n02091635 |
|
|
'176': n02091831 |
|
|
'177': n02092002 |
|
|
'178': n02092339 |
|
|
'179': n02093256 |
|
|
'180': n02093428 |
|
|
'181': n02093647 |
|
|
'182': n02093754 |
|
|
'183': n02093859 |
|
|
'184': n02093991 |
|
|
'185': n02094114 |
|
|
'186': n02094258 |
|
|
'187': n02094433 |
|
|
'188': n02095314 |
|
|
'189': n02095570 |
|
|
'190': n02095889 |
|
|
'191': n02096051 |
|
|
'192': n02096177 |
|
|
'193': n02096294 |
|
|
'194': n02096437 |
|
|
'195': n02096585 |
|
|
'196': n02097047 |
|
|
'197': n02097130 |
|
|
'198': n02097209 |
|
|
'199': n02097298 |
|
|
'200': n02097474 |
|
|
'201': n02097658 |
|
|
'202': n02098105 |
|
|
'203': n02098286 |
|
|
'204': n02098413 |
|
|
'205': n02099267 |
|
|
'206': n02099429 |
|
|
'207': n02099601 |
|
|
'208': n02099712 |
|
|
'209': n02099849 |
|
|
'210': n02100236 |
|
|
'211': n02100583 |
|
|
'212': n02100735 |
|
|
'213': n02100877 |
|
|
'214': n02101006 |
|
|
'215': n02101388 |
|
|
'216': n02101556 |
|
|
'217': n02102040 |
|
|
'218': n02102177 |
|
|
'219': n02102318 |
|
|
'220': n02102480 |
|
|
'221': n02102973 |
|
|
'222': n02104029 |
|
|
'223': n02104365 |
|
|
'224': n02105056 |
|
|
'225': n02105162 |
|
|
'226': n02105251 |
|
|
'227': n02105412 |
|
|
'228': n02105505 |
|
|
'229': n02105641 |
|
|
'230': n02105855 |
|
|
'231': n02106030 |
|
|
'232': n02106166 |
|
|
'233': n02106382 |
|
|
'234': n02106550 |
|
|
'235': n02106662 |
|
|
'236': n02107142 |
|
|
'237': n02107312 |
|
|
'238': n02107574 |
|
|
'239': n02107683 |
|
|
'240': n02107908 |
|
|
'241': n02108000 |
|
|
'242': n02108089 |
|
|
'243': n02108422 |
|
|
'244': n02108551 |
|
|
'245': n02108915 |
|
|
'246': n02109047 |
|
|
'247': n02109525 |
|
|
'248': n02109961 |
|
|
'249': n02110063 |
|
|
'250': n02110185 |
|
|
'251': n02110341 |
|
|
'252': n02110627 |
|
|
'253': n02110806 |
|
|
'254': n02110958 |
|
|
'255': n02111129 |
|
|
'256': n02111277 |
|
|
'257': n02111500 |
|
|
'258': n02111889 |
|
|
'259': n02112018 |
|
|
'260': n02112137 |
|
|
'261': n02112350 |
|
|
'262': n02112706 |
|
|
'263': n02113023 |
|
|
'264': n02113186 |
|
|
'265': n02113624 |
|
|
'266': n02113712 |
|
|
'267': n02113799 |
|
|
'268': n02113978 |
|
|
'269': n02114367 |
|
|
'270': n02114548 |
|
|
'271': n02114712 |
|
|
'272': n02114855 |
|
|
'273': n02115641 |
|
|
'274': n02115913 |
|
|
'275': n02116738 |
|
|
'276': n02117135 |
|
|
'277': n02119022 |
|
|
'278': n02119789 |
|
|
'279': n02120079 |
|
|
'280': n02120505 |
|
|
'281': n02123045 |
|
|
'282': n02123159 |
|
|
'283': n02123394 |
|
|
'284': n02123597 |
|
|
'285': n02124075 |
|
|
'286': n02125311 |
|
|
'287': n02127052 |
|
|
'288': n02128385 |
|
|
'289': n02128757 |
|
|
'290': n02128925 |
|
|
'291': n02129165 |
|
|
'292': n02129604 |
|
|
'293': n02130308 |
|
|
'294': n02132136 |
|
|
'295': n02133161 |
|
|
'296': n02134084 |
|
|
'297': n02134418 |
|
|
'298': n02137549 |
|
|
'299': n02138441 |
|
|
'300': n02165105 |
|
|
'301': n02165456 |
|
|
'302': n02167151 |
|
|
'303': n02168699 |
|
|
'304': n02169497 |
|
|
'305': n02172182 |
|
|
'306': n02174001 |
|
|
'307': n02177972 |
|
|
'308': n02190166 |
|
|
'309': n02206856 |
|
|
'310': n02219486 |
|
|
'311': n02226429 |
|
|
'312': n02229544 |
|
|
'313': n02231487 |
|
|
'314': n02233338 |
|
|
'315': n02236044 |
|
|
'316': n02256656 |
|
|
'317': n02259212 |
|
|
'318': n02264363 |
|
|
'319': n02268443 |
|
|
'320': n02268853 |
|
|
'321': n02276258 |
|
|
'322': n02277742 |
|
|
'323': n02279972 |
|
|
'324': n02280649 |
|
|
'325': n02281406 |
|
|
'326': n02281787 |
|
|
'327': n02317335 |
|
|
'328': n02319095 |
|
|
'329': n02321529 |
|
|
'330': n02325366 |
|
|
'331': n02326432 |
|
|
'332': n02328150 |
|
|
'333': n02342885 |
|
|
'334': n02346627 |
|
|
'335': n02356798 |
|
|
'336': n02361337 |
|
|
'337': n02363005 |
|
|
'338': n02364673 |
|
|
'339': n02389026 |
|
|
'340': n02391049 |
|
|
'341': n02395406 |
|
|
'342': n02396427 |
|
|
'343': n02397096 |
|
|
'344': n02398521 |
|
|
'345': n02403003 |
|
|
'346': n02408429 |
|
|
'347': n02410509 |
|
|
'348': n02412080 |
|
|
'349': n02415577 |
|
|
'350': n02417914 |
|
|
'351': n02422106 |
|
|
'352': n02422699 |
|
|
'353': n02423022 |
|
|
'354': n02437312 |
|
|
'355': n02437616 |
|
|
'356': n02441942 |
|
|
'357': n02442845 |
|
|
'358': n02443114 |
|
|
'359': n02443484 |
|
|
'360': n02444819 |
|
|
'361': n02445715 |
|
|
'362': n02447366 |
|
|
'363': n02454379 |
|
|
'364': n02457408 |
|
|
'365': n02480495 |
|
|
'366': n02480855 |
|
|
'367': n02481823 |
|
|
'368': n02483362 |
|
|
'369': n02483708 |
|
|
'370': n02484975 |
|
|
'371': n02486261 |
|
|
'372': n02486410 |
|
|
'373': n02487347 |
|
|
'374': n02488291 |
|
|
'375': n02488702 |
|
|
'376': n02489166 |
|
|
'377': n02490219 |
|
|
'378': n02492035 |
|
|
'379': n02492660 |
|
|
'380': n02493509 |
|
|
'381': n02493793 |
|
|
'382': n02494079 |
|
|
'383': n02497673 |
|
|
'384': n02500267 |
|
|
'385': n02504013 |
|
|
'386': n02504458 |
|
|
'387': n02509815 |
|
|
'388': n02510455 |
|
|
'389': n02514041 |
|
|
'390': n02526121 |
|
|
'391': n02536864 |
|
|
'392': n02606052 |
|
|
'393': n02607072 |
|
|
'394': n02640242 |
|
|
'395': n02641379 |
|
|
'396': n02643566 |
|
|
'397': n02655020 |
|
|
'398': n02666196 |
|
|
'399': n02667093 |
|
|
'400': n02669723 |
|
|
'401': n02672831 |
|
|
'402': n02676566 |
|
|
'403': n02687172 |
|
|
'404': n02690373 |
|
|
'405': n02692877 |
|
|
'406': n02699494 |
|
|
'407': n02701002 |
|
|
'408': n02704792 |
|
|
'409': n02708093 |
|
|
'410': n02727426 |
|
|
'411': n02730930 |
|
|
'412': n02747177 |
|
|
'413': n02749479 |
|
|
'414': n02769748 |
|
|
'415': n02776631 |
|
|
'416': n02777292 |
|
|
'417': n02782093 |
|
|
'418': n02783161 |
|
|
'419': n02786058 |
|
|
'420': n02787622 |
|
|
'421': n02788148 |
|
|
'422': n02790996 |
|
|
'423': n02791124 |
|
|
'424': n02791270 |
|
|
'425': n02793495 |
|
|
'426': n02794156 |
|
|
'427': n02795169 |
|
|
'428': n02797295 |
|
|
'429': n02799071 |
|
|
'430': n02802426 |
|
|
'431': n02804414 |
|
|
'432': n02804610 |
|
|
'433': n02807133 |
|
|
'434': n02808304 |
|
|
'435': n02808440 |
|
|
'436': n02814533 |
|
|
'437': n02814860 |
|
|
'438': n02815834 |
|
|
'439': n02817516 |
|
|
'440': n02823428 |
|
|
'441': n02823750 |
|
|
'442': n02825657 |
|
|
'443': n02834397 |
|
|
'444': n02835271 |
|
|
'445': n02837789 |
|
|
'446': n02840245 |
|
|
'447': n02841315 |
|
|
'448': n02843684 |
|
|
'449': n02859443 |
|
|
'450': n02860847 |
|
|
'451': n02865351 |
|
|
'452': n02869837 |
|
|
'453': n02870880 |
|
|
'454': n02871525 |
|
|
'455': n02877765 |
|
|
'456': n02879718 |
|
|
'457': n02883205 |
|
|
'458': n02892201 |
|
|
'459': n02892767 |
|
|
'460': n02894605 |
|
|
'461': n02895154 |
|
|
'462': n02906734 |
|
|
'463': n02909870 |
|
|
'464': n02910353 |
|
|
'465': n02916936 |
|
|
'466': n02917067 |
|
|
'467': n02927161 |
|
|
'468': n02930766 |
|
|
'469': n02939185 |
|
|
'470': n02948072 |
|
|
'471': n02950826 |
|
|
'472': n02951358 |
|
|
'473': n02951585 |
|
|
'474': n02963159 |
|
|
'475': n02965783 |
|
|
'476': n02966193 |
|
|
'477': n02966687 |
|
|
'478': n02971356 |
|
|
'479': n02974003 |
|
|
'480': n02977058 |
|
|
'481': n02978881 |
|
|
'482': n02979186 |
|
|
'483': n02980441 |
|
|
'484': n02981792 |
|
|
'485': n02988304 |
|
|
'486': n02992211 |
|
|
'487': n02992529 |
|
|
'488': n02999410 |
|
|
'489': n03000134 |
|
|
'490': n03000247 |
|
|
'491': n03000684 |
|
|
'492': n03014705 |
|
|
'493': n03016953 |
|
|
'494': n03017168 |
|
|
'495': n03018349 |
|
|
'496': n03026506 |
|
|
'497': n03028079 |
|
|
'498': n03032252 |
|
|
'499': n03041632 |
|
|
'500': n03042490 |
|
|
'501': n03045698 |
|
|
'502': n03047690 |
|
|
'503': n03062245 |
|
|
'504': n03063599 |
|
|
'505': n03063689 |
|
|
'506': n03065424 |
|
|
'507': n03075370 |
|
|
'508': n03085013 |
|
|
'509': n03089624 |
|
|
'510': n03095699 |
|
|
'511': n03100240 |
|
|
'512': n03109150 |
|
|
'513': n03110669 |
|
|
'514': n03124043 |
|
|
'515': n03124170 |
|
|
'516': n03125729 |
|
|
'517': n03126707 |
|
|
'518': n03127747 |
|
|
'519': n03127925 |
|
|
'520': n03131574 |
|
|
'521': n03133878 |
|
|
'522': n03134739 |
|
|
'523': n03141823 |
|
|
'524': n03146219 |
|
|
'525': n03160309 |
|
|
'526': n03179701 |
|
|
'527': n03180011 |
|
|
'528': n03187595 |
|
|
'529': n03188531 |
|
|
'530': n03196217 |
|
|
'531': n03197337 |
|
|
'532': n03201208 |
|
|
'533': n03207743 |
|
|
'534': n03207941 |
|
|
'535': n03208938 |
|
|
'536': n03216828 |
|
|
'537': n03218198 |
|
|
'538': n03220513 |
|
|
'539': n03223299 |
|
|
'540': n03240683 |
|
|
'541': n03249569 |
|
|
'542': n03250847 |
|
|
'543': n03255030 |
|
|
'544': n03259280 |
|
|
'545': n03271574 |
|
|
'546': n03272010 |
|
|
'547': n03272562 |
|
|
'548': n03290653 |
|
|
'549': n03291819 |
|
|
'550': n03297495 |
|
|
'551': n03314780 |
|
|
'552': n03325584 |
|
|
'553': n03337140 |
|
|
'554': n03344393 |
|
|
'555': n03345487 |
|
|
'556': n03347037 |
|
|
'557': n03355925 |
|
|
'558': n03372029 |
|
|
'559': n03376595 |
|
|
'560': n03379051 |
|
|
'561': n03384352 |
|
|
'562': n03388043 |
|
|
'563': n03388183 |
|
|
'564': n03388549 |
|
|
'565': n03393912 |
|
|
'566': n03394916 |
|
|
'567': n03400231 |
|
|
'568': n03404251 |
|
|
'569': n03417042 |
|
|
'570': n03424325 |
|
|
'571': n03425413 |
|
|
'572': n03443371 |
|
|
'573': n03444034 |
|
|
'574': n03445777 |
|
|
'575': n03445924 |
|
|
'576': n03447447 |
|
|
'577': n03447721 |
|
|
'578': n03450230 |
|
|
'579': n03452741 |
|
|
'580': n03457902 |
|
|
'581': n03459775 |
|
|
'582': n03461385 |
|
|
'583': n03467068 |
|
|
'584': n03476684 |
|
|
'585': n03476991 |
|
|
'586': n03478589 |
|
|
'587': n03481172 |
|
|
'588': n03482405 |
|
|
'589': n03483316 |
|
|
'590': n03485407 |
|
|
'591': n03485794 |
|
|
'592': n03492542 |
|
|
'593': n03494278 |
|
|
'594': n03495258 |
|
|
'595': n03496892 |
|
|
'596': n03498962 |
|
|
'597': n03527444 |
|
|
'598': n03529860 |
|
|
'599': n03530642 |
|
|
'600': n03532672 |
|
|
'601': n03534580 |
|
|
'602': n03535780 |
|
|
'603': n03538406 |
|
|
'604': n03544143 |
|
|
'605': n03584254 |
|
|
'606': n03584829 |
|
|
'607': n03590841 |
|
|
'608': n03594734 |
|
|
'609': n03594945 |
|
|
'610': n03595614 |
|
|
'611': n03598930 |
|
|
'612': n03599486 |
|
|
'613': n03602883 |
|
|
'614': n03617480 |
|
|
'615': n03623198 |
|
|
'616': n03627232 |
|
|
'617': n03630383 |
|
|
'618': n03633091 |
|
|
'619': n03637318 |
|
|
'620': n03642806 |
|
|
'621': n03649909 |
|
|
'622': n03657121 |
|
|
'623': n03658185 |
|
|
'624': n03661043 |
|
|
'625': n03662601 |
|
|
'626': n03666591 |
|
|
'627': n03670208 |
|
|
'628': n03673027 |
|
|
'629': n03676483 |
|
|
'630': n03680355 |
|
|
'631': n03690938 |
|
|
'632': n03691459 |
|
|
'633': n03692522 |
|
|
'634': n03697007 |
|
|
'635': n03706229 |
|
|
'636': n03709823 |
|
|
'637': n03710193 |
|
|
'638': n03710637 |
|
|
'639': n03710721 |
|
|
'640': n03717622 |
|
|
'641': n03720891 |
|
|
'642': n03721384 |
|
|
'643': n03724870 |
|
|
'644': n03729826 |
|
|
'645': n03733131 |
|
|
'646': n03733281 |
|
|
'647': n03733805 |
|
|
'648': n03742115 |
|
|
'649': n03743016 |
|
|
'650': n03759954 |
|
|
'651': n03761084 |
|
|
'652': n03763968 |
|
|
'653': n03764736 |
|
|
'654': n03769881 |
|
|
'655': n03770439 |
|
|
'656': n03770679 |
|
|
'657': n03773504 |
|
|
'658': n03775071 |
|
|
'659': n03775546 |
|
|
'660': n03776460 |
|
|
'661': n03777568 |
|
|
'662': n03777754 |
|
|
'663': n03781244 |
|
|
'664': n03782006 |
|
|
'665': n03785016 |
|
|
'666': n03786901 |
|
|
'667': n03787032 |
|
|
'668': n03788195 |
|
|
'669': n03788365 |
|
|
'670': n03791053 |
|
|
'671': n03792782 |
|
|
'672': n03792972 |
|
|
'673': n03793489 |
|
|
'674': n03794056 |
|
|
'675': n03796401 |
|
|
'676': n03803284 |
|
|
'677': n03804744 |
|
|
'678': n03814639 |
|
|
'679': n03814906 |
|
|
'680': n03825788 |
|
|
'681': n03832673 |
|
|
'682': n03837869 |
|
|
'683': n03838899 |
|
|
'684': n03840681 |
|
|
'685': n03841143 |
|
|
'686': n03843555 |
|
|
'687': n03854065 |
|
|
'688': n03857828 |
|
|
'689': n03866082 |
|
|
'690': n03868242 |
|
|
'691': n03868863 |
|
|
'692': n03871628 |
|
|
'693': n03873416 |
|
|
'694': n03874293 |
|
|
'695': n03874599 |
|
|
'696': n03876231 |
|
|
'697': n03877472 |
|
|
'698': n03877845 |
|
|
'699': n03884397 |
|
|
'700': n03887697 |
|
|
'701': n03888257 |
|
|
'702': n03888605 |
|
|
'703': n03891251 |
|
|
'704': n03891332 |
|
|
'705': n03895866 |
|
|
'706': n03899768 |
|
|
'707': n03902125 |
|
|
'708': n03903868 |
|
|
'709': n03908618 |
|
|
'710': n03908714 |
|
|
'711': n03916031 |
|
|
'712': n03920288 |
|
|
'713': n03924679 |
|
|
'714': n03929660 |
|
|
'715': n03929855 |
|
|
'716': n03930313 |
|
|
'717': n03930630 |
|
|
'718': n03933933 |
|
|
'719': n03935335 |
|
|
'720': n03937543 |
|
|
'721': n03938244 |
|
|
'722': n03942813 |
|
|
'723': n03944341 |
|
|
'724': n03947888 |
|
|
'725': n03950228 |
|
|
'726': n03954731 |
|
|
'727': n03956157 |
|
|
'728': n03958227 |
|
|
'729': n03961711 |
|
|
'730': n03967562 |
|
|
'731': n03970156 |
|
|
'732': n03976467 |
|
|
'733': n03976657 |
|
|
'734': n03977966 |
|
|
'735': n03980874 |
|
|
'736': n03982430 |
|
|
'737': n03983396 |
|
|
'738': n03991062 |
|
|
'739': n03992509 |
|
|
'740': n03995372 |
|
|
'741': n03998194 |
|
|
'742': n04004767 |
|
|
'743': n04005630 |
|
|
'744': n04008634 |
|
|
'745': n04009552 |
|
|
'746': n04019541 |
|
|
'747': n04023962 |
|
|
'748': n04026417 |
|
|
'749': n04033901 |
|
|
'750': n04033995 |
|
|
'751': n04037443 |
|
|
'752': n04039381 |
|
|
'753': n04040759 |
|
|
'754': n04041544 |
|
|
'755': n04044716 |
|
|
'756': n04049303 |
|
|
'757': n04065272 |
|
|
'758': n04067472 |
|
|
'759': n04069434 |
|
|
'760': n04070727 |
|
|
'761': n04074963 |
|
|
'762': n04081281 |
|
|
'763': n04086273 |
|
|
'764': n04090263 |
|
|
'765': n04099969 |
|
|
'766': n04111531 |
|
|
'767': n04116512 |
|
|
'768': n04118538 |
|
|
'769': n04118776 |
|
|
'770': n04120489 |
|
|
'771': n04125021 |
|
|
'772': n04127249 |
|
|
'773': n04131690 |
|
|
'774': n04133789 |
|
|
'775': n04136333 |
|
|
'776': n04141076 |
|
|
'777': n04141327 |
|
|
'778': n04141975 |
|
|
'779': n04146614 |
|
|
'780': n04147183 |
|
|
'781': n04149813 |
|
|
'782': n04152593 |
|
|
'783': n04153751 |
|
|
'784': n04154565 |
|
|
'785': n04162706 |
|
|
'786': n04179913 |
|
|
'787': n04192698 |
|
|
'788': n04200800 |
|
|
'789': n04201297 |
|
|
'790': n04204238 |
|
|
'791': n04204347 |
|
|
'792': n04208210 |
|
|
'793': n04209133 |
|
|
'794': n04209239 |
|
|
'795': n04228054 |
|
|
'796': n04229816 |
|
|
'797': n04235860 |
|
|
'798': n04238763 |
|
|
'799': n04239074 |
|
|
'800': n04243546 |
|
|
'801': n04251144 |
|
|
'802': n04252077 |
|
|
'803': n04252225 |
|
|
'804': n04254120 |
|
|
'805': n04254680 |
|
|
'806': n04254777 |
|
|
'807': n04258138 |
|
|
'808': n04259630 |
|
|
'809': n04263257 |
|
|
'810': n04264628 |
|
|
'811': n04265275 |
|
|
'812': n04266014 |
|
|
'813': n04270147 |
|
|
'814': n04273569 |
|
|
'815': n04275548 |
|
|
'816': n04277352 |
|
|
'817': n04285008 |
|
|
'818': n04286575 |
|
|
'819': n04296562 |
|
|
'820': n04310018 |
|
|
'821': n04311004 |
|
|
'822': n04311174 |
|
|
'823': n04317175 |
|
|
'824': n04325704 |
|
|
'825': n04326547 |
|
|
'826': n04328186 |
|
|
'827': n04330267 |
|
|
'828': n04332243 |
|
|
'829': n04335435 |
|
|
'830': n04336792 |
|
|
'831': n04344873 |
|
|
'832': n04346328 |
|
|
'833': n04347754 |
|
|
'834': n04350905 |
|
|
'835': n04355338 |
|
|
'836': n04355933 |
|
|
'837': n04356056 |
|
|
'838': n04357314 |
|
|
'839': n04366367 |
|
|
'840': n04367480 |
|
|
'841': n04370456 |
|
|
'842': n04371430 |
|
|
'843': n04371774 |
|
|
'844': n04372370 |
|
|
'845': n04376876 |
|
|
'846': n04380533 |
|
|
'847': n04389033 |
|
|
'848': n04392985 |
|
|
'849': n04398044 |
|
|
'850': n04399382 |
|
|
'851': n04404412 |
|
|
'852': n04409515 |
|
|
'853': n04417672 |
|
|
'854': n04418357 |
|
|
'855': n04423845 |
|
|
'856': n04428191 |
|
|
'857': n04429376 |
|
|
'858': n04435653 |
|
|
'859': n04442312 |
|
|
'860': n04443257 |
|
|
'861': n04447861 |
|
|
'862': n04456115 |
|
|
'863': n04458633 |
|
|
'864': n04461696 |
|
|
'865': n04462240 |
|
|
'866': n04465501 |
|
|
'867': n04467665 |
|
|
'868': n04476259 |
|
|
'869': n04479046 |
|
|
'870': n04482393 |
|
|
'871': n04483307 |
|
|
'872': n04485082 |
|
|
'873': n04486054 |
|
|
'874': n04487081 |
|
|
'875': n04487394 |
|
|
'876': n04493381 |
|
|
'877': n04501370 |
|
|
'878': n04505470 |
|
|
'879': n04507155 |
|
|
'880': n04509417 |
|
|
'881': n04515003 |
|
|
'882': n04517823 |
|
|
'883': n04522168 |
|
|
'884': n04523525 |
|
|
'885': n04525038 |
|
|
'886': n04525305 |
|
|
'887': n04532106 |
|
|
'888': n04532670 |
|
|
'889': n04536866 |
|
|
'890': n04540053 |
|
|
'891': n04542943 |
|
|
'892': n04548280 |
|
|
'893': n04548362 |
|
|
'894': n04550184 |
|
|
'895': n04552348 |
|
|
'896': n04553703 |
|
|
'897': n04554684 |
|
|
'898': n04557648 |
|
|
'899': n04560804 |
|
|
'900': n04562935 |
|
|
'901': n04579145 |
|
|
'902': n04579432 |
|
|
'903': n04584207 |
|
|
'904': n04589890 |
|
|
'905': n04590129 |
|
|
'906': n04591157 |
|
|
'907': n04591713 |
|
|
'908': n04592741 |
|
|
'909': n04596742 |
|
|
'910': n04597913 |
|
|
'911': n04599235 |
|
|
'912': n04604644 |
|
|
'913': n04606251 |
|
|
'914': n04612504 |
|
|
'915': n04613696 |
|
|
'916': n06359193 |
|
|
'917': n06596364 |
|
|
'918': n06785654 |
|
|
'919': n06794110 |
|
|
'920': n06874185 |
|
|
'921': n07248320 |
|
|
'922': n07565083 |
|
|
'923': n07579787 |
|
|
'924': n07583066 |
|
|
'925': n07584110 |
|
|
'926': n07590611 |
|
|
'927': n07613480 |
|
|
'928': n07614500 |
|
|
'929': n07615774 |
|
|
'930': n07684084 |
|
|
'931': n07693725 |
|
|
'932': n07695742 |
|
|
'933': n07697313 |
|
|
'934': n07697537 |
|
|
'935': n07711569 |
|
|
'936': n07714571 |
|
|
'937': n07714990 |
|
|
'938': n07715103 |
|
|
'939': n07716358 |
|
|
'940': n07716906 |
|
|
'941': n07717410 |
|
|
'942': n07717556 |
|
|
'943': n07718472 |
|
|
'944': n07718747 |
|
|
'945': n07720875 |
|
|
'946': n07730033 |
|
|
'947': n07734744 |
|
|
'948': n07742313 |
|
|
'949': n07745940 |
|
|
'950': n07747607 |
|
|
'951': n07749582 |
|
|
'952': n07753113 |
|
|
'953': n07753275 |
|
|
'954': n07753592 |
|
|
'955': n07754684 |
|
|
'956': n07760859 |
|
|
'957': n07768694 |
|
|
'958': n07802026 |
|
|
'959': n07831146 |
|
|
'960': n07836838 |
|
|
'961': n07860988 |
|
|
'962': n07871810 |
|
|
'963': n07873807 |
|
|
'964': n07875152 |
|
|
'965': n07880968 |
|
|
'966': n07892512 |
|
|
'967': n07920052 |
|
|
'968': n07930864 |
|
|
'969': n07932039 |
|
|
'970': n09193705 |
|
|
'971': n09229709 |
|
|
'972': n09246464 |
|
|
'973': n09256479 |
|
|
'974': n09288635 |
|
|
'975': n09332890 |
|
|
'976': n09399592 |
|
|
'977': n09421951 |
|
|
'978': n09428293 |
|
|
'979': n09468604 |
|
|
'980': n09472597 |
|
|
'981': n09835506 |
|
|
'982': n10148035 |
|
|
'983': n10565667 |
|
|
'984': n11879895 |
|
|
'985': n11939491 |
|
|
'986': n12057211 |
|
|
'987': n12144580 |
|
|
'988': n12267677 |
|
|
'989': n12620546 |
|
|
'990': n12768682 |
|
|
'991': n12985857 |
|
|
'992': n12998815 |
|
|
'993': n13037406 |
|
|
'994': n13040303 |
|
|
'995': n13044778 |
|
|
'996': n13052670 |
|
|
'997': n13054560 |
|
|
'998': n13133613 |
|
|
'999': n15075141 |
|
|
- name: data |
|
|
dtype: binary |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 128798692994 |
|
|
num_examples: 1281167 |
|
|
- name: validation |
|
|
num_bytes: 5027050000 |
|
|
num_examples: 50000 |
|
|
download_size: 57961329620 |
|
|
dataset_size: 133825742994 |
|
|
- config_name: I2E-MNIST |
|
|
features: |
|
|
- name: file_path |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: |
|
|
class_label: |
|
|
names: |
|
|
'0': '0' |
|
|
'1': '1' |
|
|
'2': '2' |
|
|
'3': '3' |
|
|
'4': '4' |
|
|
'5': '5' |
|
|
'6': '6' |
|
|
'7': '7' |
|
|
'8': '8' |
|
|
'9': '9' |
|
|
- name: data |
|
|
dtype: binary |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 132648890 |
|
|
num_examples: 60000 |
|
|
- name: validation |
|
|
num_bytes: 22098890 |
|
|
num_examples: 10000 |
|
|
download_size: 60473109 |
|
|
dataset_size: 154747780 |
|
|
- config_name: I2E-Mini-ImageNet |
|
|
features: |
|
|
- name: file_path |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: |
|
|
class_label: |
|
|
names: |
|
|
'0': n01532829 |
|
|
'1': n01558993 |
|
|
'2': n01704323 |
|
|
'3': n01749939 |
|
|
'4': n01770081 |
|
|
'5': n01843383 |
|
|
'6': n01855672 |
|
|
'7': n01910747 |
|
|
'8': n01930112 |
|
|
'9': n01981276 |
|
|
'10': n02074367 |
|
|
'11': n02089867 |
|
|
'12': n02091244 |
|
|
'13': n02091831 |
|
|
'14': n02099601 |
|
|
'15': n02101006 |
|
|
'16': n02105505 |
|
|
'17': n02108089 |
|
|
'18': n02108551 |
|
|
'19': n02108915 |
|
|
'20': n02110063 |
|
|
'21': n02110341 |
|
|
'22': n02111277 |
|
|
'23': n02113712 |
|
|
'24': n02114548 |
|
|
'25': n02116738 |
|
|
'26': n02120079 |
|
|
'27': n02129165 |
|
|
'28': n02138441 |
|
|
'29': n02165456 |
|
|
'30': n02174001 |
|
|
'31': n02219486 |
|
|
'32': n02443484 |
|
|
'33': n02457408 |
|
|
'34': n02606052 |
|
|
'35': n02687172 |
|
|
'36': n02747177 |
|
|
'37': n02795169 |
|
|
'38': n02823428 |
|
|
'39': n02871525 |
|
|
'40': n02950826 |
|
|
'41': n02966193 |
|
|
'42': n02971356 |
|
|
'43': n02981792 |
|
|
'44': n03017168 |
|
|
'45': n03047690 |
|
|
'46': n03062245 |
|
|
'47': n03075370 |
|
|
'48': n03127925 |
|
|
'49': n03146219 |
|
|
'50': n03207743 |
|
|
'51': n03220513 |
|
|
'52': n03272010 |
|
|
'53': n03337140 |
|
|
'54': n03347037 |
|
|
'55': n03400231 |
|
|
'56': n03417042 |
|
|
'57': n03476684 |
|
|
'58': n03527444 |
|
|
'59': n03535780 |
|
|
'60': n03544143 |
|
|
'61': n03584254 |
|
|
'62': n03676483 |
|
|
'63': n03770439 |
|
|
'64': n03773504 |
|
|
'65': n03775546 |
|
|
'66': n03838899 |
|
|
'67': n03854065 |
|
|
'68': n03888605 |
|
|
'69': n03908618 |
|
|
'70': n03924679 |
|
|
'71': n03980874 |
|
|
'72': n03998194 |
|
|
'73': n04067472 |
|
|
'74': n04146614 |
|
|
'75': n04149813 |
|
|
'76': n04243546 |
|
|
'77': n04251144 |
|
|
'78': n04258138 |
|
|
'79': n04275548 |
|
|
'80': n04296562 |
|
|
'81': n04389033 |
|
|
'82': n04418357 |
|
|
'83': n04435653 |
|
|
'84': n04443257 |
|
|
'85': n04509417 |
|
|
'86': n04515003 |
|
|
'87': n04522168 |
|
|
'88': n04596742 |
|
|
'89': n04604644 |
|
|
'90': n04612504 |
|
|
'91': n06794110 |
|
|
'92': n07584110 |
|
|
'93': n07613480 |
|
|
'94': n07697537 |
|
|
'95': n07747607 |
|
|
'96': n09246464 |
|
|
'97': n09256479 |
|
|
'98': n13054560 |
|
|
'99': n13133613 |
|
|
- name: data |
|
|
dtype: binary |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 6031941884 |
|
|
num_examples: 60000 |
|
|
download_size: 2568434568 |
|
|
dataset_size: 6031941884 |
|
|
configs: |
|
|
- config_name: I2E-CIFAR10 |
|
|
data_files: |
|
|
- split: train |
|
|
path: I2E-CIFAR10/train-* |
|
|
- split: validation |
|
|
path: I2E-CIFAR10/validation-* |
|
|
- config_name: I2E-CIFAR100 |
|
|
data_files: |
|
|
- split: train |
|
|
path: I2E-CIFAR100/train-* |
|
|
- split: validation |
|
|
path: I2E-CIFAR100/validation-* |
|
|
- config_name: I2E-Caltech101 |
|
|
data_files: |
|
|
- split: train |
|
|
path: I2E-Caltech101/train-* |
|
|
- config_name: I2E-Caltech256 |
|
|
data_files: |
|
|
- split: train |
|
|
path: I2E-Caltech256/train-* |
|
|
- config_name: I2E-FashionMNIST |
|
|
data_files: |
|
|
- split: train |
|
|
path: I2E-FashionMNIST/train-* |
|
|
- split: validation |
|
|
path: I2E-FashionMNIST/validation-* |
|
|
- config_name: I2E-ImageNet |
|
|
data_files: |
|
|
- split: train |
|
|
path: I2E-ImageNet/train-* |
|
|
- split: validation |
|
|
path: I2E-ImageNet/validation-* |
|
|
- config_name: I2E-MNIST |
|
|
data_files: |
|
|
- split: train |
|
|
path: I2E-MNIST/train-* |
|
|
- split: validation |
|
|
path: I2E-MNIST/validation-* |
|
|
- config_name: I2E-Mini-ImageNet |
|
|
data_files: |
|
|
- split: train |
|
|
path: I2E-Mini-ImageNet/train-* |
|
|
license: mit |
|
|
task_categories: |
|
|
- image-classification |
|
|
- video-classification |
|
|
tags: |
|
|
- neuromorphic |
|
|
- snn |
|
|
- spiking neural networks |
|
|
- event |
|
|
- dvs |
|
|
- biology |
|
|
- pytorch |
|
|
- imagenet |
|
|
- cifar10 |
|
|
- cifar100 |
|
|
- caltech101 |
|
|
- caltech256 |
|
|
- mnist |
|
|
- fashionmnist |
|
|
- mini-imagenet |
|
|
pretty_name: I2E Neuromorphic Dataset |
|
|
language: |
|
|
- en |
|
|
--- |
|
|
|
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
<h1>I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks</h1> |
|
|
|
|
|
[](https://arxiv.org/abs/2511.08065) |
|
|
[](https://aaai.org/) |
|
|
[](https://scholar.google.com/scholar?cluster=1814482600796011970) |
|
|
[](https://github.com/Ruichen0424/I2E) |
|
|
|
|
|
[](https://huggingface.co/papers/2511.08065) |
|
|
[](https://huggingface.co/Ruichen0424/I2E) |
|
|
</div> |
|
|
|
|
|
## π Introduction |
|
|
|
|
|
This repository hosts the **I2E-Datasets**, a comprehensive suite of neuromorphic datasets generated using the **I2E (Image-to-Event)** framework. This work has been accepted for **Oral Presentation at AAAI 2026**. |
|
|
|
|
|
**I2E** bridges the data scarcity gap in **Neuromorphic Computing** and **Spiking Neural Networks (SNNs)**. By simulating microsaccadic eye movements via highly parallelized convolution, I2E converts static images into high-fidelity event streams in real-time (>300x faster than prior methods). |
|
|
|
|
|
## ποΈ Visualization |
|
|
|
|
|
The following comparisons illustrate the high-fidelity conversion from static RGB images to dynamic event streams using I2E. |
|
|
|
|
|
<table border="0" style="width: 100%"> |
|
|
<tr> |
|
|
<td width="25%" align="center"><img src="./assets/original_1.jpg" alt="Original 1" style="width:100%"></td> |
|
|
<td width="25%" align="center"><img src="./assets/converted_1.gif" alt="Converted 1" style="width:100%"></td> |
|
|
<td width="25%" align="center"><img src="./assets/original_2.jpg" alt="Original 2" style="width:100%"></td> |
|
|
<td width="25%" align="center"><img src="./assets/converted_2.gif" alt="Converted 2" style="width:100%"></td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td width="25%" align="center"><img src="./assets/original_3.jpg" alt="Original 3" style="width:100%"></td> |
|
|
<td width="25%" align="center"><img src="./assets/converted_3.gif" alt="Converted 3" style="width:100%"></td> |
|
|
<td width="25%" align="center"><img src="./assets/original_4.jpg" alt="Original 4" style="width:100%"></td> |
|
|
<td width="25%" align="center"><img src="./assets/converted_4.gif" alt="Converted 4" style="width:100%"></td> |
|
|
</tr> |
|
|
</table> |
|
|
|
|
|
*More visualization comparisons can be found in [Visualization.md](./Visualization.md).* |
|
|
|
|
|
## π¦ Dataset Catalog |
|
|
|
|
|
We provide a comprehensive collection of standard benchmarks converted into event streams via the I2E algorithm. |
|
|
|
|
|
### 1. Standard Benchmarks (Classification) |
|
|
| Config Name | Original Source | Resolution $(H, W)$ | I2E Ratio | Event Rate | Samples (Train/Val) | |
|
|
| :--- | :--- | :--- | :--- | :--- | :--- | |
|
|
| **`I2E-CIFAR10`** | CIFAR-10 | 128 x 128 | 0.07 | 5.86% | 50k / 10k | |
|
|
| **`I2E-CIFAR100`** | CIFAR-100 | 128 x 128 | 0.07 | 5.76% | 50k / 10k | |
|
|
| **`I2E-ImageNet`** | ILSVRC2012 | 224 x 224 | 0.12 | 6.66% | 1.28M / 50k | |
|
|
|
|
|
### 2. Transfer Learning & Fine-grained |
|
|
| Config Name | Original Source | Resolution $(H, W)$ | I2E Ratio | Event Rate | Samples | |
|
|
| :--- | :--- | :--- | :--- | :--- | :--- | |
|
|
| **`I2E-Caltech101`** | Caltech-101 | 224 x 224 | 0.12 | 6.25% | 8.677k | |
|
|
| **`I2E-Caltech256`** | Caltech-256 | 224 x 224 | 0.12 | 6.04% | 30.607k | |
|
|
| **`I2E-Mini-ImageNet`**| Mini-ImageNet | 224 x 224 | 0.12 | 6.65% | 60k | |
|
|
|
|
|
### 3. Small Scale / Toy |
|
|
| Config Name | Original Source | Resolution $(H, W)$ | I2E Ratio | Event Rate | Samples | |
|
|
| :--- | :--- | :--- | :--- | :--- | :--- | |
|
|
| **`I2E-MNIST`** | MNIST | 32 x 32 | 0.10 | 9.56% | 60k / 10k | |
|
|
| **`I2E-FashionMNIST`** | Fashion-MNIST | 32 x 32 | 0.15 | 10.76% | 60k / 10k | |
|
|
|
|
|
> π **Coming Soon:** Object Detection and Semantic Segmentation datasets. |
|
|
|
|
|
## π οΈ Preprocessing Protocol |
|
|
|
|
|
To ensure reproducibility, we specify the exact data augmentation pipeline applied to the static images **before** I2E conversion. |
|
|
|
|
|
The `(H, W)` in the code below corresponds to the "Resolution" column in the Dataset Catalog above. |
|
|
|
|
|
```python |
|
|
from torchvision.transforms import v2 |
|
|
|
|
|
# Standard Pre-processing Pipeline used for I2E generation |
|
|
transform_train = v2.Compose([ |
|
|
# Ensure 3-channel RGB (crucial for grayscale datasets like MNIST) |
|
|
v2.Lambda(lambda x: x.convert('RGB')), |
|
|
v2.PILToTensor(), |
|
|
v2.Resize((H, W), interpolation=v2.InterpolationMode.BICUBIC), |
|
|
v2.ToDtype(torch.float32, scale=True), |
|
|
]) |
|
|
```` |
|
|
|
|
|
## π» Usage |
|
|
|
|
|
### π Quick Start |
|
|
|
|
|
You **do not** need to download any extra scripts. Just copy the code below. It handles the binary unpacking (converting Parquet bytes to PyTorch Tensors) automatically. |
|
|
|
|
|
```python |
|
|
import io |
|
|
import torch |
|
|
import numpy as np |
|
|
from datasets import load_dataset |
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
|
|
# ================================================================== |
|
|
# 1. Core Decoding Function (Handles the binary packing) |
|
|
# ================================================================== |
|
|
def unpack_event_data(item, use_io=True): |
|
|
""" |
|
|
Decodes the custom binary format: |
|
|
Header (8 bytes) -> Shape (T, C, H, W) -> Body (Packed Bits) |
|
|
""" |
|
|
if use_io: |
|
|
with io.BytesIO(item['data']) as f: |
|
|
raw_data = np.load(f) |
|
|
else: |
|
|
raw_data = np.load(item) |
|
|
|
|
|
header_size = 4 * 2 # Parse Header (First 8 bytes for 4 uint16 shape values) |
|
|
shape_header = raw_data[:header_size].view(np.uint16) |
|
|
original_shape = tuple(shape_header) # Returns (T, C, H, W) |
|
|
|
|
|
packed_body = raw_data[header_size:] # Parse Body & Bit-unpacking |
|
|
unpacked = np.unpackbits(packed_body) |
|
|
|
|
|
num_elements = np.prod(original_shape) # Extract valid bits (Handle padding) |
|
|
event_flat = unpacked[:num_elements] |
|
|
event_data = event_flat.reshape(original_shape).astype(np.float32).copy() |
|
|
|
|
|
return torch.from_numpy(event_data) |
|
|
|
|
|
# ================================================================== |
|
|
# 2. Dataset Wrapper |
|
|
# ================================================================== |
|
|
class I2E_Dataset(Dataset): |
|
|
def __init__(self, cache_dir, config_name, split='train', transform=None, target_transform=None): |
|
|
print(f"π Loading {config_name} [{split}] from Hugging Face...") |
|
|
self.ds = load_dataset('UESTC-BICS/I2E', config_name, split=split, cache_dir=cache_dir, keep_in_memory=False) |
|
|
self.transform = transform |
|
|
self.target_transform = target_transform |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.ds) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
item = self.ds[idx] |
|
|
event = unpack_event_data(item) |
|
|
label = item['label'] |
|
|
if self.transform: |
|
|
event = self.transform(event) |
|
|
if self.target_transform: |
|
|
label = self.target_transform(label) |
|
|
return event, label |
|
|
|
|
|
# ================================================================== |
|
|
# 3. Run Example |
|
|
# ================================================================== |
|
|
if __name__ == "__main__": |
|
|
import os |
|
|
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # Use HF mirror server in some regions |
|
|
|
|
|
DATASET_NAME = 'I2E-CIFAR10' # Choose your config: 'I2E-CIFAR10', 'I2E-ImageNet', etc. |
|
|
MODEL_PATH = 'Your cache path here' # e.g., './hf_datasets_cache/' |
|
|
|
|
|
train_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='train') |
|
|
val_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='validation') |
|
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=32, persistent_workers=True) |
|
|
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=32, persistent_workers=True) |
|
|
|
|
|
events, labels = next(iter(train_loader)) |
|
|
print(f"β
Loaded Batch Shape: {events.shape}") # Expect: [32, T, 2, H, W] |
|
|
print(f"β
Labels: {labels}") |
|
|
``` |
|
|
|
|
|
## π Results (SOTA) |
|
|
|
|
|
Our I2E-pretraining sets new benchmarks for Sim-to-Real transfer on **CIFAR10-DVS**. |
|
|
|
|
|
<table border="1"> |
|
|
<tr> |
|
|
<th>Dataset</th> |
|
|
<th align="center">Architecture</th> |
|
|
<th align="center">Method</th> |
|
|
<th align="center">Top-1 Acc</th> |
|
|
</tr> |
|
|
<!-- CIFAR10-DVS --> |
|
|
<tr> |
|
|
<td rowspan="3" align="center" style="vertical-align: middle;"><strong>CIFAR10-DVS</strong><br>(Real)</td> |
|
|
<td align="center" style="vertical-align: middle;">MS-ResNet18</td> |
|
|
<td align="center" style="vertical-align: middle;">Baseline</td> |
|
|
<td align="center" style="vertical-align: middle;">65.6%</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td align="center" style="vertical-align: middle;">MS-ResNet18</td> |
|
|
<td align="center" style="vertical-align: middle;">Transfer-I</td> |
|
|
<td align="center" style="vertical-align: middle;">83.1%</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td align="center" style="vertical-align: middle;">MS-ResNet18</td> |
|
|
<td align="center" style="vertical-align: middle;">Transfer-II (Sim-to-Real)</td> |
|
|
<td align="center" style="vertical-align: middle;"><strong>92.5%</strong></td> |
|
|
</tr> |
|
|
</table> |
|
|
|
|
|
*For full results and model weights, please visit our [GitHub Repo](https://github.com/Ruichen0424/I2E).* |
|
|
|
|
|
[](https://github.com/Ruichen0424/I2E) |
|
|
[](https://huggingface.co/Ruichen0424/I2E) |
|
|
|
|
|
## π Citation |
|
|
|
|
|
If you find this work or the models useful, please cite our AAAI 2026 paper: |
|
|
|
|
|
```bibtex |
|
|
@article{ma2025i2e, |
|
|
title={I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks}, |
|
|
author={Ma, Ruichen and Meng, Liwei and Qiao, Guanchao and Ning, Ning and Liu, Yang and Hu, Shaogang}, |
|
|
journal={arXiv preprint arXiv:2511.08065}, |
|
|
year={2025} |
|
|
} |
|
|
``` |