msiudek's picture
Add test embeddings from Pre-computed embeddings from AstroPT VIS model
443f593 verified
metadata
dataset_info:
  features:
    - name: object_id
      dtype: int64
    - name: embedding
      sequence: float32
  splits:
    - name: train
      num_bytes: 818515188
      num_examples: 265407
    - name: test
      num_bytes: 204632652
      num_examples: 66353
  download_size: 1230299259
  dataset_size: 1023147840
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*

AstroPT Euclid Embeddings

Pre-computed embeddings from the AstroPT VIS Model on Euclid dataset samples.

Overview

This repository contains pre-computed feature embeddings generated by AstroPT models applied to the Euclid Q1 galaxy dataset. These embeddings can be used for

  • Efficient downstream task training (reduced computational cost)
  • Feature analysis and visualization
  • Similarity search and retrieval
  • Clustering and unsupervised learning
  • Fast fine-tuning on specialized tasks

Example notebooks are found in the AstroPT scripts

Available embeddings:

Quick Start

Load VIS Embeddings

from datasets import load_dataset

# Load VIS embeddings
embeddings = load_dataset(
    "msiudek/astroPT_euclid_VIS_embeddings",
    split="train",
    streaming=True
)

# View a sample
sample = embeddings[0]
print(f"Object ID: {sample['object_id']}")
print(f"Embedding shape: {len(sample['embedding'])}")
print(f"Embedding: {sample['embedding']}")

Related Resources

Models:

Datasets:

Code:

Citation

@article{Siudek2025,
  title={AstroPT: Astronomical Physics Transformers for Multi-modal Learning},
  author={Siudek, M and others},
  journal={Euclid Collaboration},
  eprint={2503.15312},
  archivePrefix={arXiv},
  year={2025},
  url={https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract}
}

License

CC-BY-4.0


Last Updated: December 2025
Embeddings Version: 1.0