metadata
dataset_info:
features:
- name: object_id
dtype: int64
- name: embedding
sequence: float32
splits:
- name: train
num_bytes: 818515188
num_examples: 265407
- name: test
num_bytes: 204632652
num_examples: 66353
download_size: 1230299259
dataset_size: 1023147840
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
AstroPT Euclid Embeddings
Pre-computed embeddings from the AstroPT VIS Model on Euclid dataset samples.
Overview
This repository contains pre-computed feature embeddings generated by AstroPT models applied to the Euclid Q1 galaxy dataset. These embeddings can be used for
- Efficient downstream task training (reduced computational cost)
- Feature analysis and visualization
- Similarity search and retrieval
- Clustering and unsupervised learning
- Fast fine-tuning on specialized tasks
Example notebooks are found in the AstroPT scripts
Available embeddings:
- VIS: Single-band embeddings from Euclid VIS imaging; VIS embeddings
- VIS+NISP: Multi-band embeddings from VIS + 3× NIR (Y, J, H); VIS+NISP embeddings
- VIS+NISP+SED: Multi-modal embeddings from imaging + 13-band photometry; VIS+NISP+SED embeddings
Quick Start
Load VIS Embeddings
from datasets import load_dataset
# Load VIS embeddings
embeddings = load_dataset(
"msiudek/astroPT_euclid_VIS_embeddings",
split="train",
streaming=True
)
# View a sample
sample = embeddings[0]
print(f"Object ID: {sample['object_id']}")
print(f"Embedding shape: {len(sample['embedding'])}")
print(f"Embedding: {sample['embedding']}")
Related Resources
Models:
Datasets:
- AstroPT Euclid Dataset: Original imaging + photometry
- AstroPT Euclid Metadata: Galaxy properties
Code:
- AstroPT GitHub: Training and inference code
Citation
@article{Siudek2025,
title={AstroPT: Astronomical Physics Transformers for Multi-modal Learning},
author={Siudek, M and others},
journal={Euclid Collaboration},
eprint={2503.15312},
archivePrefix={arXiv},
year={2025},
url={https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract}
}
License
CC-BY-4.0
Last Updated: December 2025
Embeddings Version: 1.0