rcastrovexler's picture
Add processor (feature extractor + tokenizer)
ddee687 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - generator
metrics:
  - wer
model-index:
  - name: whisper-es-multicorpus-streaming-v3
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: generator
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - type: wer
            value: 0.06276824034334764
            name: Wer

whisper-es-multicorpus-streaming-v3

This model is a fine-tuned version of openai/whisper-small on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0816
  • Wer: 0.0628

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1346 0.2 200 0.1566 0.2221
0.117 0.4 400 0.1217 0.0790
0.0861 0.6 600 0.1079 0.0633
0.0419 1.1180 800 0.1172 0.0899
0.0467 1.318 1000 0.0816 0.0628

Framework versions

  • Transformers 4.57.2
  • Pytorch 2.9.0+cu126
  • Datasets 4.4.1
  • Tokenizers 0.22.1