|
|
--- |
|
|
language: en |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- sentiment-analysis |
|
|
- transformers |
|
|
- unknown |
|
|
- text-classification |
|
|
datasets: |
|
|
- unknown |
|
|
metrics: |
|
|
- accuracy |
|
|
- f1 |
|
|
- precision |
|
|
- recall |
|
|
model-index: |
|
|
- name: unknown-sentiment |
|
|
results: |
|
|
- task: |
|
|
type: text-classification |
|
|
name: Sentiment Analysis |
|
|
dataset: |
|
|
name: UNKNOWN |
|
|
type: unknown |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 0.0000 |
|
|
name: Test Accuracy |
|
|
- type: f1 |
|
|
value: 0.0000 |
|
|
name: F1 Score |
|
|
- type: precision |
|
|
value: 0.0000 |
|
|
name: Precision |
|
|
- type: recall |
|
|
value: 0.0000 |
|
|
name: Recall |
|
|
--- |
|
|
|
|
|
# UNKNOWN Fine-tuned for Sentiment Analysis |
|
|
|
|
|
## π Model Description |
|
|
|
|
|
This model is a fine-tuned version of `unknown` for sentiment analysis on the UNKNOWN dataset. |
|
|
|
|
|
**Model Architecture:** unknown |
|
|
**Task:** Binary Sentiment Classification (Positive/Negative) |
|
|
**Language:** English |
|
|
**Training Date:** N/A |
|
|
|
|
|
## π― Performance Metrics |
|
|
|
|
|
| Metric | Score | |
|
|
|--------|-------| |
|
|
| **Accuracy** | 0.0000 | |
|
|
| **F1 Score** | 0.0000 | |
|
|
| **Precision** | 0.0000 | |
|
|
| **Recall** | 0.0000 | |
|
|
| **Loss** | 0.0000 | |
|
|
|
|
|
## π§ Training Details |
|
|
|
|
|
### Hyperparameters |
|
|
|
|
|
```json |
|
|
{} |
|
|
``` |
|
|
|
|
|
### Dataset |
|
|
- **Training samples:** N/A |
|
|
- **Validation samples:** N/A |
|
|
- **Test samples:** N/A |
|
|
|
|
|
## π Usage |
|
|
|
|
|
### With Transformers Pipeline |
|
|
|
|
|
```python |
|
|
from transformers import pipeline |
|
|
|
|
|
# Load the model |
|
|
classifier = pipeline("sentiment-analysis", model="YOUR_USERNAME/YOUR_MODEL_NAME") |
|
|
|
|
|
# Predict |
|
|
result = classifier("I love this movie!") |
|
|
print(result) |
|
|
# [{'label': 'POSITIVE', 'score': 0.9998}] |
|
|
``` |
|
|
|
|
|
### Manual Usage |
|
|
|
|
|
```python |
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
import torch |
|
|
|
|
|
# Load model and tokenizer |
|
|
model_name = "YOUR_USERNAME/YOUR_MODEL_NAME" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
|
|
# Prepare input |
|
|
text = "This is an amazing product!" |
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) |
|
|
|
|
|
# Predict |
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) |
|
|
|
|
|
# Get result |
|
|
label_id = torch.argmax(predictions).item() |
|
|
score = predictions[0][label_id].item() |
|
|
|
|
|
labels = ["NEGATIVE", "POSITIVE"] |
|
|
print(f"Label: {labels[label_id]}, Score: {score:.4f}") |
|
|
``` |
|
|
|
|
|
## π Training Curves |
|
|
|
|
|
Training history visualization is available in the model files. |
|
|
|
|
|
## π·οΈ Label Mapping |
|
|
|
|
|
``` |
|
|
0: NEGATIVE |
|
|
1: POSITIVE |
|
|
``` |
|
|
|
|
|
## βοΈ Model Configuration |
|
|
|
|
|
```json |
|
|
{} |
|
|
``` |
|
|
|
|
|
## π Citation |
|
|
|
|
|
If you use this model, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{sentiment-model-unknown, |
|
|
author = {Your Name}, |
|
|
title = {unknown Fine-tuned for Sentiment Analysis}, |
|
|
year = {2025}, |
|
|
publisher = {Hugging Face}, |
|
|
howpublished = {\url{https://huggingface.co/YOUR_USERNAME/YOUR_MODEL_NAME}} |
|
|
} |
|
|
``` |
|
|
|
|
|
## π€ Contact |
|
|
|
|
|
For questions or feedback, please open an issue in the repository. |
|
|
|
|
|
## π License |
|
|
|
|
|
Apache 2.0 |
|
|
|
|
|
## π Related Models |
|
|
|
|
|
- [unknown](https://huggingface.co/unknown) |
|
|
|
|
|
--- |
|
|
|
|
|
**Generated with MLflow tracking** π |
|
|
|